Abstract:The strict stability criterion was established through one-machine infinite bus (OMIB) equivalence, and trajectory sensitivity and differential evolution (DE) techniques were applied to solving transient stability constrained optimal power flow (TSCOPF) problem, in which critical stable rotor angle was used as rotor angle threshold in transient stability constraint and the predicted unstable time was introduced to modify this rotor angle threshold, highly improving the threshold correctness and optimization accuracy. According to OMIB equivalence, faults were classified into stable, extreme stable, generally unstable, and very unstable faults. And extreme stable faults were deleted in transient stability constraints, saving trajectory sensitivity computing accordingly. Furthermore, in order to pursuing fast convergence features of the improved trajectory sensitivity method and global search ability of the DE method, a hybrid algorithm for TSCOPF under multi-contingency condition was formed by the combination of these two methods. Population size and computation burden are greatly decreased in the proposed DE method. The DE fitness value considering normalized stable margin for unstable faults better evaluates the individual’s stability and economic index. Efficiency and practicality of the proposed method are validated on a 3-machine system and a 10-machine test system.
黄玉龙, 刘明波. 求解暂态稳定约束最优潮流的混合算法[J]. 电工技术学报, 2012, 27(5): 229-237.
Huang Yulong, Liu Mingbo. Hybrid Algorithm for Solution of Transient Stability Constrained Optimal Power Flow. Transactions of China Electrotechnical Society, 2012, 27(5): 229-237.
[1] Vittal V, Zhou E Z, Hwang C, et al. Derivation of stability limits using analytical sensitivity of the transient energy margin[J]. IEEE Transactions on Power System, 1989, 4(4): 1363-1372. [2] K N Shubhanga, A M Kulkarni. Stability-constrained generation rescheduling using energy margin sensitivities[J]. IEEE Transactions on Power Systems, 2004, 19(3): 1402-1413. [3] 刘明波, 阳曾. 含暂态能量裕度约束多故障最优潮流计算[J]. 中国电机工程学报, 2007, 27(34): 12-18. Liu Mingbo, Yang Zeng. Optimal power flow calculation with transient energy margin constraints under multi-contigency conditions[J]. Proceedings of the CSEE, 2007, 27(34): 12-18. [4] Tony B Nguyen, M A Pai. Dynamic security- constrained rescheduling of power systems using trajectory sensitivities[J]. IEEE Transactions on Power Systems, 2003, 18(2): 848-854. [5] Shubhanga K N, Kulkarni A M. Determination of effectiveness of transient stability controls using reduced number of trajectory sensitivity computations [J]. IEEE Transactions on Power Systems, 2004, 19(1): 473-482. [6] Fang Dazhong, Yang Xiaodong, Sun Jingqiang, et al. An optimal generation rescheduling approach for transient stability enhancement [J]. IEEE Transactions on Power Systems, 2007, 22(1): 386-394. [7] 李贻凯, 刘明波. 多故障暂态稳定约束最优潮流的轨迹灵敏度法[J]. 中国电机工程学报, 2009, 29(16): 42-48. Li Yikai, Liu Mingbo. Trajectory sensitivity method for transient stability constrained optimal power flow under multi-contingency condition[J]. Proceedings of the CSEE, 2009, 29(16): 42-48. [8] 刘明波, 李妍红, 陈家荣. 基于轨迹灵敏度的暂态稳定约束最优潮流计算[J]. 电力系统及其自动化学报, 2007, 19(6): 24-29. Liu Mingbo, Li Yanhong, Chan K W. Transient stability constrained optimal power flow using trajectory sensitivities[J]. Proceedings of the CSU-EPSA, 2007, 19(6): 24-29. [9] I A Hiskens, M A Pai. Trajectory sensitivity analysis of hybrid systems[J]. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 2000, 47(2): 204-220. [10] Laufenberg M J, Pai M A. A new approach to dynamic security assessment using trajectory sensitivities[J]. IEEE Transactions on Power Systems, 1998, 13(3): 953-958. [11] Y Xue, Th Van Cutsem, M Ribbens-Pavella. Extended equal area criterion justification, generalizations, applications[J]. IEEE Transactions on Power Systems, 1989, 4(1): 44-52. [12] Y Xue, L Wehenkel, et al. Extended equal area criterion revised[J]. IEEE Transactions on Power Systems, 1992, 7(3): 1012-1022. [13] Y Zhang, P Rousseaux, L Wehenkel, et al. SIME: A comprehensive approach to fast transient stability assessment[C]. Proceedings of lEE-Japan, Power and Energy'96, Osaka, Japan, 1996: 1177-182. [14] Y Zhang, L Wehenkel, P Rousseaux, et al. Transient stability transfer limits of a longitudinal system using the SIME method[C]. Proceedings of MELECON, Bari, Italy, 1996, 809-815. [15] Y Zhang, L Wehenkel, P Rousseaux, et al. SIME: A hybrid approach to fast transient stability assessment and contingency selection[J]. Electrical Power & Energy Systems, 1997, 19(3): 195-208. [16] Rafael Zarate-Minano, Thierry Van Cutsem, et al. Securing transient stability using time-domain simulations within an optimal power flow[J]. IEEE Transactions on Power Systems, 2010, 25(1): 243-253. [17] Alejandro Pizano-Martinez, Claudio R Fuerte- Esquivel, et al. Global transient stability-constrained optimal power flow using an OMIB reference trajectory[J]. IEEE Transactions on Power Systems, 2010, 25(1): 392-403. [18] R Storn, K Price. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces[R]. International Computer Science Institute, Berkeley, CA, 1995. [19] H R Cai, C Y Chung, K P Wong. Application of differential evolution algorithm for transient stability constrained optimal power flow[J]. IEEE Transactions on Power Systems, 2008, 23(2): 719-728. [20] Y Xue, M Pavella. Critical cluster identification in transient stability studies[C]. IEE Proceedings, Part C, 1993, 140(6): 481-489. [21] Y Xue. The gap criterion: a tool for selecting good candidate critical clusters. Private communication, 1993. [22] 何仰赞, 温增银. 电力系统分析(下册)[M]. 武汉: 华中科技大学出版社, 2002. [23] Zimmeraman R D, Gan D. MATPOWER: A MATLAB power system simulation package[CP/OL]. 2005-02-14. http://www. pserc.cornell.edu/matpower [24] Graham R, Joe C. Power system transients: A Matlab power system simulation package[CP/OL]. 1997- 08-18. www.eagle.ca/~cherry /pst.htm