电工技术学报
论文 |
考虑低通信成本的张量分解个性化联邦学习超短期电力负荷预测方法
罗光浩1,2, 崔明建1,2, 韩一宁1, 黄勇3, 张剑4
1.天津大学电气自动化与信息工程学院 天津 300072;
2.天津大学福州国际联合学院 天津 300072;
3.广州智寻科技有限公司 广州 510700;
4.合肥工业大学电气与自动化工程学院 合肥 230009
A Low-Communication-Cost Tensor Decomposition-Based Personalized Federated Learning Method for Ultra-Short-Term Power Load Forecasting
Luo Guanghao1,2, Cui Mingjian1,2, Han Yining1, Huang Yong3, Zhang Jian4
1. School of Electrical and Information Engineering Tianjin University Tianjin 300072 China;
2. The Fuzhou International Joint Institute Tianjin University Tianjin 300072 China;
3. Guangzhou Zhixun Technology Co., Ltd Guangzhou 510700 China;
4. School of Electrical Engineering and Automation Hefei University of Technology Hefei 230009 China