Model for Predicting Thickness of Rime Accreted on Composite Insulators
Zhang Zhijin1 , Huang Haizhou2 , Jiang Xingliang1 , Hu Jianlin1 , Sun Caixin1
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China; 2. Wanzhou Electric Power Bureau of Chongqing Power Grid Wanzhou 404199 China
Abstract:Based on the Lagrange method, through numerically solution of flow field and droplet trajectories around composite insulator, the droplet collision coefficients on different regions of polymeric insulator are calculated. Meanwhile, the influences of wind speed and MVD(medium volume diameter) on droplet collision coefficients are analyzed. After the calculation of droplet collision coefficients of insulators, according to the principle of mass conservation and energy conservation, the model for predicting thickness of rime accretion on composite insulators is built and verified by artificial icing growth test. The numerical calculation and test results indicate that: The collision coefficient on windward rod and edge of windward shed are much larger than that on windward shed surface, and the collision coefficient on windward shed surface is twice the collision coefficient on leeward surface of composite insulator. The collision coefficient increases with the increase of wind velocity and MVD, and the influencing degree of MVD is bigger than that of wind velocity. It is found that when the thickness of rime on sheds is less than 8mm, this predicting model has a good accuracy and the relative error is less than 8%. When the thickness of rime on sheds is in the range of 10~14mm, the accuracy of this model become slightly worse and the relative error is in the range of 12%~15%.
[1] CIGRE Task Force 33.04.09. Influence of ice and snow on the flashover performance of outdoor insulators part I: effects of ice[J]. Electra, 1999, 187: 90-111. [2] CIGRE Task Force 33.04.09. Influence of ice and snow on the flashover performance of outdoor insulators part II: effects of snow[J]. Electra, 2000, 188: 55-69. [3] 张志劲, 蒋兴良, 胡建林, 等. 间插布置方式对交流绝缘子串覆冰覆冰特性影响[J]. 电工技术学报, 2011, 26(1): 170-176. Zhang Zhijin, Jiang Xingliang, Hu Jianlin, et al. Influence of the type of insulators connected with alternately large and small diameter sheds on AC icing flashover performance[J]. Transactions of China Electrotechnical Society, 2011, 26(1): 170-176. [4] 胡毅. 电网大面积冰灾分析及对策探讨[J]. 高电压技术, 2008, 34(2): 215-219. Hu Yi. Analysis and countermeasures discussion for large area icing accident on power grid[J]. High Voltage Engineering, 2008, 34(2): 215-219. [5] Li Z, Zhang Q, Liu F, et al. Discharge propagation along the air gap on an ice-covered insulator string[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2238-2239. [6] 蒋兴良, 易辉. 输电线路覆冰及防护[M]. 北京: 中国电力出版社, 2002. [7] 黄强, 王家红, 欧名勇. 2005年湖南电网冰灾事故分析及其应对措施[J]. 电网技术, 2005, 29(24): 16-19. Huang Qiang, Wang Jiahong, Ou Mingyong. Analysis on accidents caused by icing damage in Hunan power grid in 2005 and its countermeasures[J]. Power System Technology, 2005, 29(24): 16-19. [8] 李庆峰, 范峥, 吴穹, 等. 全国输电线路覆冰情况调研及事故分析[J]. 电网技术, 2008 , 32(9): 33-36. Li Qingfeng, Fan Zheng, Wu Qiong, et al. Investigation of ice-covered transmission lines and analysis on transmission line failures caused by ice-coating in China[J]. Power System Technology, 2008, 32(9): 33-36. [9] R List. Ice accretions on structures[J]. Journal of Glaciology, 1997, 19(81): 451-465. [10] Personne P, Gayet. J F. Ice accretion on wires and anti-icing induced by joule effect[J]. Journal of Applied Meteorology, 1988, 27: 101-114. [11] Farzaneh M, Savadjiev K. Statistical analysis of field data for precipitation icing accretion on overhead power lines[J]. IEEE Transactions Power Delivery, 2005, 20(2): 1080-1087. [12] Imai. Studies on ice accretion[J]. Researches on Snow and Ice, 1953, 3(1): 35-34. [13] Lenhard RW. An indirect method for estimating the weight of glaze on wires[J]. Bull Amer. Meteor Soc, 1955, 36(3): 1-5. [14] Kuroiwa D. Icing and snow accretion on electric wires[R]. U.S. Army Cold Regions Research and Engineering Laboratory, Research Report, 1965: 1-10. [15] Chaine P M, Casfonguay G. New approach to radial ice thichness concept applied to bundle-like conductors [C]. Industrial Metecrology Study VI, Environment Canada, Tnronto, 1974. [16] Makkonen L. Modeling power line icing in freezing precipitation[C]. 7th International Workshop on Atmospheric Icing of Structures, Canada, 1998: 195-200. [17] Messinger B L. Equilibrium temperature of an unheated icing surface as a function of airspeed[J]. Aeronautic. Sci. 1953, 20(1): 29-42. [18] Wright W B. Advancement in the LEWICE ice accretion model[J]. AIAA Paper, 1993, 93: 0171-0188. [19] Beaugendre H, Morency F, Habashi W G. Development of a second generation in-flight icing simulation code[J]. Journal of Fluids Engineering, 2006, 128(2): 378-387. [20] Fu Ping, Farzaneh Masoud, Bouchard Gilles. Two- dimensional modeling of the ice accretion process on transmission line wires and conductors[J]. Cold Regions Science and Technology, 2006, 46(2): l32-146. [21] 巢亚锋. 分裂导线和多串并联绝缘子覆冰模型与影响因素的研究[D]. 重庆: 重庆大学, 2011. [22] 蒋兴良, 肖丹华, 陈凌, 等. 基于界面移动理论的导线覆冰过程分析[J].高电压技术, 2011, 37(4): 982-989. Jiang Xingliang, Xiao Danhua, Chen Ling, et al. Physical process of icing on fixed wires by interface movement theory[J]. High Voltage Engineering, 2011, 37(4):982-989. [23] 蒋兴良, 温作铭. 过冷水滴撞击复合绝缘子表面的数值模拟[J]. 高电压技术, 2008, 34(5): 888-892.[23] Jiang Xingliang, Wen Zuoming. Numerical simulation of supercooled water droplet impingement on composite 24 insulator surface[J]. High Voltage Engineering, 2008, 34(5): 888-892. [24] 郭昊, 刘沛清, 屈秋林, 等. 输电线雾凇覆冰过程的二维数值模拟[J]. 工程力学, 2011, 28(5): 212-218. Guo Hao, Liu Peiqing, Qu Qiulin, et al. Two- dimensional numerical simulation of the rime accretion process on transition lines[J]. Engineering Mechanics, 2011, 28(5): 212-218. [25] Rollet-Miet P, Laurence D, Ferziger J. LES and RANS of turbulent flow in tube bundles[J]. International Journal of Heat and Fluid Flow, 1999, 20(3): 241-254. [26] Yeuan J J, Liang T, Hamed A. Viscous simulations in a transonic fan using k - ε and algebraic turbulence models[C]. The 36th Aerospace Science Meeting and Exhibit, Reno, 1998: 0932. [27] Scott J N, Hankey W L. Navier-stokes solution to the flowfield over ice accretion shapes[J]. Aircraft, 1988, 25: 710-716. [28] 易贤, 朱国林. 翼型积冰的数值模拟[J].空气动力学学报, 2002, 24(4): 428-433. Yi Xian, Zhu Guolin. Numerically simulating of ice accretion on airfoil[J]. Acta Aerodynamica Sinica, 2002, 24(4): 428-433. [29] 杨倩, 常士楠, 袁修干. 水滴撞击特性的数值计算方法研究[J]. 航空学报, 2002, 23(2): 173-176. Yang Qian, Chang Shinan, Yuan Xiugan. Study on numerical method for determinning the droplet trajectories[J]. Acta Aeronautica Et Astronautica Sinica, 2002, 23(2): 173-176. [30] 温作铭. 基于流体力学的覆冰地区用复合绝缘子伞裙结构研究[D]. 重庆: 重庆大学, 2007. [31] 蒋兴良, 李海波. 计算流体力学在绝缘子积污特性分析中的应用[J]. 高电压技术, 2010, 36(2): 329-335. Jiang Xingliang, Li Haibo. Application of computational fluid dynamics to analysis of contamination depositing characteristics of insulators[J]. High Voltage Enginee- ring, 2010, 36(2): 329-335.