Energy Management Strategy of Isolated Microgrid Based on Multi-time Scale Coordinated Control
Guo Siqi1, Yuan Yue1, Zhang Xinsong2, Bao Wei3, Liu Chun3, Cao Yang1, 3, Wang Haiqian4
1. Hohai University Nanjing 211100 China; 2. Nantong University Nantong 226019 China; 3. China Electric Power Research Institute Beijing 100089 China; 4.Jiangsu Electric Power Company Nanjing 210014 China
Abstract:As an effective technology to manage distributed generation in smart grid, microgrid attracts more and more attention. An energy optimization model of isolated microgrid is built in this paper, in which, both operating characteristics of diesel generators and demand side energy management loads, and operation costs of energy storage calculated accurately by the rain-flow counting method are all considered. The optimization objective of the model is to minimize operating costs of microgrid by controlling power flows in microgrid from day-ahead and intra-day time-scales, i.e., both on/off schedules and output powers of generators and demand side energy management loads are optimized coordinately from these two time-scales. Simulations on certain real microgrid show effectiveness of the methodology proposed in this paper.
郭思琪, 袁越, 张新松, 鲍薇, 刘纯, 曹阳, 王海潜. 多时间尺度协调控制的独立微网能量管理策略[J]. 电工技术学报, 2014, 29(2): 122-129.
Guo Siqi, Yuan Yue, Zhang Xinsong, Bao Wei, Liu Chun, Cao Yang, Wang Haiqian. Energy Management Strategy of Isolated Microgrid Based on Multi-time Scale Coordinated Control. Transactions of China Electrotechnical Society, 2014, 29(2): 122-129.
[1] 王成山, 李鹏. 分布式发电、微网与智能配电网的发展与挑战[J]. 电力系统自动化, 2010, 34(2): 10-14, 23. Wang Chengshan, Li Peng. Development and challenges of distributed generation, the micro-grid and smart distribution system[J]. Automation of Electric Power Systems, 2010, 34(2): 10-14, 23. [2] Lasseter R H, Piagi P. Microgrid: a conceptual solution[C], Proceedings of IEEE 35th Annual Power Electrics Specialists Conference, June 20-25, 2004, Aachen, Germany: 4285-4290. [3] 李振杰, 袁越. 智能微网——未来智能配电网新的组织形式[J]. 电力系统自动化, 2009, 33(17): 42-48. Li Zhenjie, Yuan Yue. Smart microgrid——a noval organization form of smart distribution grid in the future[J]. Automation of Electric Power Systems, 2009, 33(17): 42-48. [4] 陈昌松, 段善旭, 殷进军, 等. 基于发电预测的分布式发电能量管理系统[J]. 电工技术学报, 2010, 25(3): 150-156. Chen Changsong, Duan Shanxu, Yin Jinjun, et al. Energy management system of distributed generation based on power forecasting[J]. Transactions of China Electrotechnical Society, 2010, 25(3): 150-156. [5] 陈昌松, 段善旭, 蔡涛, 等. 基于改进遗传算法的微网能量管理模型[J]. 电工技术学报, 2013, 28(4): 196-201. Chen Changsong, Duan Shanxu, Cai Tao, et al. Microgrid energy management model based on improved genetic arithmetic[J]. Transactions of China Electrotechnical Society, 2013, 28(4): 196-201. [6] Katiraei F, Iravani M R. Power management strategies for a microgrid with multiple distributed generation units[J]. IEEE Transaction on Power Systems, 2006, 21(4): 1821-1831. [7] 向月, 刘俊勇, 魏震波, 等. 可再生能源接入下新型可中断负荷发展研究[J]. 电力系统保护与控制, 2012, 40(5): 148-155. Xiang Yue, Liu Junyong, Wei Zhenbo, et al. Research on development of new interruptible load with renewable energy access[J]. Power System Protection and Control, 2012, 40(5): 148-155. [8] 吴雄, 王秀丽, 崔强. 考虑需求侧管理的微网经济优化运行[J]. 西安交通大学学报, 2013, 47(6): 90-96. Wu Xiong, Wang Xiuli, Cui Qiang. Optimal operation of microgrid considering demand side management[J]. Journal of Xi’an Jiaotong University, 2013, 47(6): 90-96. [9] 陈洁, 杨秀, 朱兰, 等. 不同运行调度模式下微网经济运行对比分析[J]. 电力自动化设备, 2013, 33(8): 106-113. Chen Jie, Yang Xiu, Zhu Lan, et al. Comparison of microgrid economic operation among different dispatch modes[J]. Electric Power Automation Equipment, 2013, 33(8): 106-113. [10] 王新刚, 艾芊, 徐伟华, 等. 含分布式发电的微电网能量管理多目标优化[J]. 电力系统保护与控制, 2009, 37(40): 79-83. Wang Xingang, Ai Qian, Xu Weihua, et al. Multi-objective optimal energy management of microgrid with distributed generation[J]. Power System Protection and Control, 2009, 37(40): 79-83. [11] 周晓燕, 刘天琪, 沈浩东, 等. 含多种分布式电源的微电网经济调度研究[J]. 电工电能新技术, 2013, 32(1): 5-8, 18. Zhou Xiaoyan, Liu Tianqi, Shen Haodong, et al. Research on economic dispatch of microgrid with multi-distributed generation[J]. Advanced Technology of Electrical Engineering and Energy, 2013, 32(1): 5-8, 18. [12] Divya KC, Østergaard J. Battery energy storage technology for power systems-an overview[J]. Electric Power Systems Research, 2009, 79(4): 511-520. [13] Yuan Y, Zhang XS, Ju P, et al. Determination of economic dispatch of wind farm-battery energy storage system using genetic algorithm[J]. European Transac- tions on Electrical Power, 2012 (In press, DOI: 10.1002/etep.1696). [14] 郭小鹏, 沙云东, 张军. 基于雨流计数法的随机声疲劳寿命估算方法研究[J]. 沈阳航空工业学院学报, 2009, 26(3): 10-14. Guo Xiaopeng, Sha Yundong, Zhang Jun. Random fatigue life estimation based on rain-flow counting method[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2009, 26(3): 10-14. [15] 夏冬, 吴俊勇, 贺电, 等. 一种新型的风电功率预测综合模型[J]. 电工技术学报, 2011, 26(增刊1): 262-266. Xia Dong, Wu Junyong, He Dian, et al. A novel combined model for wind power forecasting based on maximum entropy principle[J]. Transactions of China Electrotechnical Society, 2011, 26(S1): 262-266. [16] 程其云, 孙才新, 张晓星, 等. 以神经网络与模糊逻辑互补的电力系统短期负荷预测模型机方法[J]. 电工技术学报, 2004, 19(10): 53-58. Cheng Qiyun, Sun Caixin, Zhang Xiaoxing, et al. Short-term forecasting model and method for power system based on complementation of neural network and fuzzy logic[J]. Transactions of China Electrote- chnical Society, 2004, 19(10): 53-58. [17] 陈民铀, 朱博, 徐瑞林, 等. 基于混合智能技术的微电网剩余负荷超短期预测[J]. 电力自动化设备, 2012, 32(5): 13-18. Chen Minyou, Zhu Bo, Xu Ruilin, et al. Ultra-short term forecasting of microgrid surplus load based on hybrid intelligence techniques[J]. Electric Power Automation Equipment, 2012, 32(5): 13-18. [18] Ezzati S M, Yousefi G R, Pedram M M, et al. Security-constrained unit commitment based on hybrid benders decomposition and mixed integer non-linear programming[C]. 2010 IEEE International Energy Conference,Manama, 2010: 233-237.