New Developments in Switching Arc Research in DC Circuit Breaker
Rong Mingzhe1, Yang Fei1, 2, Wu Yi1, Sun Hao1, Li Yang1, Niu Chunping1
1. State Key Lab of Electrical Insulation and Power Equipment Xi’an Jiaotong University Xi’an 710049 China; 2. State Grid Pinggao Group Co. Ltd. Pingdingshan 467000 China
Abstract:Recently, low-voltage, medium voltage and high voltage DC transmission and distribution system has been in a period of rapid development. DC circuit breaker has also become a new hot research area in electrical engineering. Switching arc plays a significant role in the DC current interruption which is formed in the interrupting process of DC circuit breaker (DCCB). The control of arc evolution and extinction is one of the most important problems to be solved in the development of DCCB. According to the differences of breaking principle and work voltage, there mainly have been three types of DCCB related to arc phenomenon, such as air circuit breaker, self-excited oscillation circuit breaker and hybrid circuit breaker. In this paper, previous simulation and experimental works on the switching arc phenomenon in these DCCB are reviewed. And some points for the future development needs are presented.
荣命哲, 杨飞, 吴翊, 孙昊, 李阳, 纽春萍. 直流断路器电弧研究的新进展[J]. 电工技术学报, 2014, 29(1): 1-9.
Rong Mingzhe, Yang Fei, Wu Yi, Sun Hao, Li Yang, Niu Chunping. New Developments in Switching Arc Research in DC Circuit Breaker. Transactions of China Electrotechnical Society, 2014, 29(1): 1-9.
[1] Franck C M. HVDC circuit breakers: a review identifying future research needs[J]. IEEE Transactions on Power Delivery, 2011, 26(2): 998-1007. [2] Kirby N, Xu L, Luckett M, et al. HVDC transmission for large offshore wind farms[J]. Power Engineering Journal, 2002, 16(3): 135-141. [3] Lu W, Ooi B. Optimal acquisition and aggregation of offshore wind power by multiterminal voltage-source HVDC[J]. IEEE Transactions on Power Delivery, 2003, 18(1): 201-206. [4] Meyer C, Hoeing M, Peterson A, et al. Control and design of DC grids for offshore wind farms[J]. IEEE Transactions on Industry Applications, 2007, 43(6): 1475-1482. [5] DLR, German Aerospace Center Institute of Technical Thermo-Dynamics. Section systems analysis and technology assessment. Trans-mediterranean inter- connection for concentrating solar power[R]. 2006. [6] Bonicelli T, Lorenzi A, Hrabal D, et al. The European development of a full scale switching unit for the ITER switching and discharging networks[J]. Fusion Engineering and Design, 2005, 75-79: 193-200. [7] Yang F, Ma R G, Wu Y, et al. Numerical study on arc plasma behavior during arc commutation process in direct current circuit breaker[J]. Plasma Science and Technology, 2012, 14(2): 167-171. [8] Niwa Y, Yokokura K, Matsuzaki J. Fundamental investigation and application of high-speed VCB for DC power system of railway[C]. XXIVth International Symposium on Discharge and Electrical Insulation in Vacuum, 2010. [9] Rong M Z, Wu Y, Yang F, et al. Numerical research on switching arc of circuit breaker[C]. Proceeding of the 1st International Conference on Electric Power Equipment- Switching Technology, 2011: 488-491. [10] Meyer C, Kowal M, De Doncker R W. Circuit breaker concepts for future high-power DC-applications[C]. Record of the IEEE Industry Applications Conference, 2005: 860-866. [11] Greenwood, Kanngiessner K, Lesclae V, et al. Circuit breakers for meshed multiterminal HVDC systems part I: introduction DC side substation switching under normal and fault conditions[J]. Electra, 1995, 163: 98-122. [12] Greenwood, Kanngiessner K, Lesclae V, et al. Circuit breakers for meshed multiterminal HVDC systems part II: switching of transmission lines in meshed MTDC systems[J]. Electra, 1996, 164: 62-82. [13] Bergstrom L, Juhlin L E, Liss G, et al. Simulator study of multiterminal HVDC system performance[J]. IEEE Transactions on Power Apparatus and Systems, 1978, 97(6): 2057-2066. [14] Kanngiesser K, Ring H, Wess T. Simulator study on line fault clearing by DC circuit breakers in a meshed MTDC system[C]. Proceeding of the International Conference AC and DC Power Transmission, London, UK, 1991: 102-107. [15] Nakao H, Nakagoshi Y, Hatano M, et al. DC current interruption in HVDC SF6 gas MRTB by means of self-excited oscillation superimposition[J]. IEEE Transactions on Power Delivery, 2001, 16(4): 687-693. [16] Andersson D, Henriksson A. Passive and active DC breakers in the three Gorges-Changzhou HVDC project[C]. Proceeding of International Conference on Power Systems, 2001: 391-395. [17] 杨飞. 空气介质中压直流大电流快速开断技术的研究[D]. 西安: 西安交通大学, 2010. [18] 宁佐清, 罗锦华. 直流空气断路器缩小弧区的研究[J]. 船电技术, 2004(2): 28-29. Ning Z Q, Luo J H. The study on reducing the direct current air-breaker’s arc-area[J]. Marine Electric and Electric Technology, 2004(2): 28-29. [19] Dominguez G, Friberg A. Effect of polymeric gas on re-strike phenomenon[C]. Proceeding of the XIX International Conference on Gas Discharges and Their Applications, 2012: 218-221. [20] Wu Y, Rong M Z, Sun Z Q, et al. Numerical analysis of arc plasma behaviour during contact opening process in low-voltage switching device[J]. Journal of Physics D(Applied Physics), 2007, 40(3): 795-802. [21] Wu Y, Rong M Z, Li X W, et al. Numerical analysis of the effect of the chamber width and outlet area of the motion of an air arc plasma[J]. IEEE Transactions on Plasma Science, 2008, 36(5): 2831-2837. [22] Wu Y, Rong M Z, Yang F, et al. Numerical modeling of arc root transfer during contact opening in low-voltage air circuit breaker[J]. IEEE Transactions on Plasma Science, 2008, 36(4): 1074-1075. [23] Yang F, Rong M Z, Wu Y, et al. Numerical analysis of the influence of splitter-plate erosion on an air arc in the quenching chamber of a low-voltage circuit breaker[J]. Journal of Physics D(Applied Physics), 2010, 43(43): 434011(12 pages). [24] Yang F, Rong M Z, Wu Y, et al. Numerical analysis of arc characteristics of splitting process considering ferromagnetic plate in low-voltage arc chamber[J]. IEEE Transactions on Plasma Science, 2010, 38(11): 3219-3225. [25] Rong M Z, Yang F, Wu Y, et al. Simulation of arc characteristics in miniature circuit breaker[J]. IEEE Transactions on Plasma Science, 2010, 38(9): 2306-2311. [26] 舒印彪, 刘泽洪, 高理迎,等. ±800kV 6 400MW特高压直流输电工程设计[J]. 电网技术, 2006, 30(1): 1-8. Shu Y B, Liu Z H, Gao L Y, et al. A preliminary exploration for design of ±800kV UHVDC project with transmission capacity of 6 400MW[J]. Power System Technology, 2006, 30(1): 1-8. [27] 范建斌, 于永清, 刘泽洪,等. ±800kV特高压直流输电标准体系的建立[J]. 电网技术, 2006, 30(14): 1-6. Fan J B, Yu Y Q, Liu Z H, et al. Introduction of ±800kV HVDC transmission standards system[J]. Power System Technology, 2006, 30(14): 1-6. [28] 刘海峰, 徐政, 金丽成,等. 世界远距离大容量高压直流输电工程可靠性调查综述[J]. 高压电器, 2002, 38(3): 1-4. Liu H F, Xu Z, Jin L C, et al. A review of the reliability survey of long distance high power HVDC transmission project throughout the world[J]. High Voltage Apparatus, 2002, 38(3): 1-4. [29] 黄道春, 魏远航, 钟连宏,等. 我国发展特高压直流输电中一些问题的探讨[J]. 电网技术, 2007, 31(8): 6-12. Huang D C, Wei Y H, Zhong L H, et al. Discussion on several problems of developing UHVDC transmission in China[J]. Power System Technology, 2007, 31(8): 6-12. [30] 袁清云. 特高压直流输电技术现状及在我国的应用前景[J]. 电网技术, 2005, 29(14): 1-3. Yuan Q Y. Present state and application prospect of ultra HVDC transmission in China[J]. Power System Technology, 2005, 29(14): 1-3. [31] 王帮田. 高压直流断路器技术[J]. 高压电器, 2010, 46(9): 61-64, 68. Wang B T. Technology of HVDC circuit breaker[J]. High Voltage Apparatus, 2010, 6(9): 61-64, 68. [32] 荣命哲, 杨飞, 吴翊,等. 特高压直流转换开关MRTB电弧特性仿真与实验研究[J]. 高压电器, 2013, 49(5): 1-5. Rong M Z, Yang F, Wu Y, et al. Numerical analysis of arc characteristics in ultra-high voltage switch MRTB[J]. High Voltage Apparatus, 2013, 49(5): 1-5.