Abstract:This paper describes the three-dimensional(3-D) domain integral equation based method,the nonlinear contrast source inversion(CSI) algorithm for the 3-D microwave imaging. The frequency Hopping(FH) approach is applied in the CSI algorithm for reconstructing two homogeneous 3-D dielectric targets in an anechoic chamber. The experimental microwave data are supplied from the Fresnel institute using the multi-frequency multi-bistatic measurements. The inversion results,which are presented and compared,verify the accuracy and feasibility of the 3-D CSI algorithm with the FH approach,which is a very promising method for the 3-D microwave imaging.
谢玉芯,缪竟鸿,王学静. 基于域积分方程的对比源反演算法在三维微波成像中的应用[J]. 电工技术学报, 2013, 28(5): 161-166.
Xie Yuxin,Miao Jinghong,Wang Xuejing. Application of the Contrast Source Inversion Algorithm for Three- Dimensional Microwave Imaging Based on Domain Integral Equation. Transactions of China Electrotechnical Society, 2013, 28(5): 161-166.
[1] J Miao, Y Xie, J Li, et al. Application of linear algorithms for reconstructing complicated targets from experimental data[C]. Proceedings of the International Symposium on Computer Science and Society, Kota Kinabalu, Malaysia, 2011: 26-28. [2] 任笑珍, 杨汝良. 机载前视SAR三维成像算法研究[J]. 电子与信息学报, 2010, 32(6): 1361-1365. Ren Xiaozhen, Yang Ruliang. Study on three- dimensional imaging algorithm for airborne forward- looking SAR[J]. Journal of Electronics and Information Technology, 2010, 32(6): 1361-1365. [3] 王金峰, 皮亦鸣, 曹宗杰. 一种机载SAR层析三维成像算法[J]. 电子与信息学报, 2010, 32(5): 1029-1033. Wang Jinfeng, Pi Yiming, Cao Zongjie. An algorithm for airborne SAR tomography 3D imaging[J]. Journal of Electronics and Information Technology, 2010, 32(5): 1029-1033. [4] 何劲, 罗迎, 张群, 等. 随机线性调频步进雷达波形设计及成像算法研究[J]. 电子与信息学报, 2011, 33(9): 2068-2075. He Jin, Luo Ying, Zhang Qun, et al. Waveform design and imaging algorithm research of random frequency stepped chirp signal ISAR[J]. Journal of Electronics and Information Technology, 2011, 33(9): 2068-2075. [5] A Abubarkar, P M van den Berg. Iterative forward and inverse algorithms based on domain integral equations for three dimensional electric and magnetic objects[J]. Journal of Computatinal Physics, 2004, 195(1): 236-262. [6] P Barri#x000e8;re, J Idier, J Laurin, et al. Contrast source inversion method applied to relatively high contrast objects[J]. Inverse Problems, 2011, 27(7): 075012. [7] J M Geffrin, P Sabouroux, Continuing with the Fresnel database: experimental setup and improvements in 3D scattering measurement[J]. Inverse Problems, 2009, 25: 024001. [8] J Miao. Linear and nonlinear inverse scattering algorithms applied in 2-D electromagnetics and elastodynamics[M]. Kassel: Kassel University Press, 2008. [9] R E Kleinman, P M van den Berg. A contrast source inversion method[J]. Inverse Problems, 1997, 13(6): 1607-1620. [10] A Zakaria, C Gilmore, J Lovetri. Finite-element contrast source inversion method for microwave imaging[J]. Inverse Problems, 2010, 26(1): 115010.