A DC-DC Converter Control Method with Output Short-circuit Protection Capability
Lu Yongfeng1,2, Wei Tongzhen2, Huo Qunhai2
1. University of Chinese Academy of Sciences Beijing 100190 China 2. Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China
Abstract:Due to economic, technological and other advantages, the DC converter has been widely used, and will be further developed. Boost converter is short of the ability to limit load current. Buck converter has the ability to limit short-circuit current, owing to outside inductance. The converter, consisting of Boost-Buck back-to-back structure, can limit the load short-circuit current perfectly by the control method presented in this paper. By voltage and current double closed-loop control, the converter works in the state of constant voltage source. When the loads short-circuit occurs, the converter works in the state of constant-current source by sampling the output inductor current for closed-loop control. By this control method, the converter has the ability of load short-circuit protection. System simulation and experimental results demonstrate this conclusion that with the proposed control method, the Boost-Buck converter has a good load short-circuit characteristics.
卢永丰, 韦统振, 霍群海. 具有输出短路保护能力的DC-DC换流器控制方法研究[J]. 电工技术学报, 2013, 28(2增): 292-297.
Lu Yongfeng, Wei Tongzhen, Huo Qunhai. A DC-DC Converter Control Method with Output Short-circuit Protection Capability. Transactions of China Electrotechnical Society, 2013, 28(2增): 292-297.
[1] Baran Mesut E, Mahajan Nikhil R. DC distribution for industrial systems: opportunities and challenges[J]. IEEE Transactions on Industry Applications, 2003, 39(6): 1596-1601. [2] Guida B, Rubino L, Marino P, et al. Implementation of control and protection logics for a bidirectional DC/DC converter[C]. 2010 IEEE International Symposium on Industrial Electronics(ISIE), 2010: 2696-2701. [3] Steigerwald R L, De Doncker R W, Kheraluwala H. A comparison of high-power DC-DC soft-switched converter topologies[J]. IEEE Transactions on Industry Applications, 1996, 32(5): 1139-1145. [4] Baran M E, Mahajan N R. Overcurrent protection on voltage-source-converter-based multiterminal DC distribution systems[J]. IEEE Transactions on Power Delivery, 2007, 22(1): 406-412. [5] Lee J H, Bae H S, Park S H, et al. Constant resistance control of solar array regulator using average current mode control[C]. 21st Annual IEEE Applied Power Electronics Conference and Exposition, 2006. (APEC'06). 2006. [6] Swingler A D, Dunford W G. Development of a bi-directional DC/DC converter for inverter/charger applications with consideration paid to large signal operation and quasi-linear digital control[C]. 2002 IEEE 33rd Annual Power Electronics Specialists Conference, 2002. (PESC 02). 2002, 2: 961-966. [7] Jovcic D, Ooi B T. Theoretical aspects of fault isolation on high-power direct current lines using resonant direct current/direct current converters[J]. IET Proceedings Generation, Transmission & Distribution, 2011, 5(2): 153-160. [8] Cho H Y, Santi E. Modeling and stability analysis of Cascaded multi-converter systems including feedforward and feedback control[C]. 2008 IEEE Industry Applications Society Annual Meeting, (IAS'08), 2008: 1-8. [9] Li Y, Vannorsdel K R, Zirger A J, et al. Current mode control for boost converters with constant power loads[J]. IEEE Circuits and Systems I: Regular Papers, 2012, 59(1): 198-206. [10] Cho H Y, Santi E. Peak-current-mode-controlled buck converter with positive feedforward control[C]. IEEE 2009 Energy Conversion Congress and Exposition, (2009. ECCE), 2009: 2928-2935. [11] Kazimierczuk M K, Edstrom A J. Open-loop peak voltage feedforward control of PWM buck converter[J]. IEEE Circuits and Systems I: Fundamental Theory and Applications, 2000, 47(5): 740-746. [12] 朱晋, 韦统振, 霍群海. 一种新型全桥变桥臂型 VSC-HVDC 变流拓扑[J]. 中国电机工程学报, 2013, 33(3): 52-61. Zhu Jin, Wei Tongzhen, Huo Qunhai. A new full- bridge alternative arm based VSC-HVDC converter[J]. Proceedings of the CSEE, 2013, 33(3): 52-61. [13] 霍群海, 李东, 韦统振. 基于IPI控制策略的APF 控制[J]. 电力自动化设备, 2012, 32(12): 43-47. Huo Qunhai, Li Dong, Wei Tongzhen. IPI control strategy for APF[J]. Electric Power Automation Equipment, 2012, 32(12): 43-47. [14] 韦统振, 李耀华, 朱海滨. 变流器外特性下垂并联控制方法的分析, 设计和性能比较[J]. 电工电能新技术, 2005, 24(1): 35-39. Wei Tongzhen, Li Yaohua, Zhu Haibin. Analysis, design and performance comparison of droop method of parallel power converters[J]. Advanced Technology of Electrical Engineering And Energy, 2005, 24(1): 35-39. [15] 程汉相, 尹项根, 刘建. SVG 控制系统的稳定性研究[J]. 电力自动化设备, 2004, 24(4): 8-11. Cheng Hanxiang, Yin Xianggen, Liu Jian. Research of SVG control system stabilization[J]. Electric Power Automation Equipment, 2004, 24(4): 8-11.