Virtual Boundary Element Method in Computational Electromagnetics
Zhang Huaiqing1, Wang Yawei2, Fu Zhihong1
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China; 2. Shanghai Jiao Tong University Shanghai 200240 China
Abstract:In order to solve the problems of singular integral and boundary layer effects in traditional boundary element method (BEM), the idea of virtual boundary is introduced into this paper. Thus, a new virtual boundary element method (VBEM) for numerical computation of electromagnetic field is formed. In this method, the field points and source points can be set on different boundary, so that the problems of singular integral and boundary layer effects are effectively avoided in the numerical computing process. Meanwhile, the method inherits almost all the advantages of the traditional BEM. The conclusions from numerical examples show that VBEM has higher calculation accuracy than traditional BEM. Then, the paper investigates the influence of the virtual boundary to the accuracy, and the numerical examples show that the influence is small. The VBEM can still acquire satisfactory performance when the shape or size of virtual boundary is changed.
张淮清, 王亚伟, 付志红. 虚边界元法在电磁场计算中的应用[J]. 电工技术学报, 2013, 28(2): 86-90.
Zhang Huaiqing, Wang Yawei, Fu Zhihong. Virtual Boundary Element Method in Computational Electromagnetics. Transactions of China Electrotechnical Society, 2013, 28(2): 86-90.
[1] 倪光正,杨仕友,邱捷,等. 工程电磁场数值计算[M]. 北京: 机械工业出版社, 2004. [2] 杨德全, 赵忠生. 边界元理论及应用[M]. 北京: 北京理工大学出版社, 2002. [3] 刘姜玲, 王泽忠. 三维静电场边界元法的积分精度问题[J]. 高电压技术, 2005, 31(9): 21-24. Liu Jiangling, Wang Zezhong. Integral precision of the BEM of 3-D electric field[J]. High Voltage Engineering, 2005, 31 (9): 21-24. [4] Burges G J, Mahajerin E A. A comparison of boundary element and superposition methods[J]. Comput Structures, 1984, 19(5-6): 697-705. [5] 孙焕纯, 杨海天, 等. 虚边界元法的应用及其求解方法[J]. 应用力学学报, 1994, 11(1): 1-2. Sun Huanchun, Yang Haitian, et al. Virtual boundary element method-application and strategies for solution[J]. Chinese Journal of Applied Mechanics, 1994, 11(1): 1-2. [6] 张耀明, 孙焕纯, 杨家新. 虚边界元法的理论分析[J]. 计算力学学报, 2000, 17(1): 55-61. Zhang Yaoming, Sun Huanchun, Yang Jiaxin. Theoretic analysis on virtual boundary element[J]. Chinese Journal of Computational Mechanics, 2000, 17(1): 55-61. [7] 孙焕纯, 李性厚, 张立州. 弹性力学问题的虚边界元——配点法[J]. 计算结构力学及其应用, 1991, 8(1): 1-2. Sun Huanchun, Li Xinghou, Zhang Lizou. Virtual boundary element-collocation method for solving problems of elasticity[J]. Computational Structural Mechanics and Applications, 1991, 8(1): 1-2. [8] 杜亚楠. 二维Laplace方程虚实边界元方法计算比较[D]. 重庆: 重庆大学, 2010. [9] Zhijia Zhang, Qiang Xu. Application of fast mutipole VBEM to two-dimensional potential problems[C]. Proceedings of the 2009 International Conference on Engineering Computation, 2009: 217-220. [10] Zhijia Zhang, Qiang Xu. Meshless virtual boundary least-square collocation method for 2-D elastic problems[C]. Proceedings of the 2010 Third International Joint Conference on Computational Science and Optimization, 2010: 41-45. [11] 王文昭, 胡敏强. 三维线性磁场计算中的边界元法[J]. 电工技术学报, 1987, 2: 6-11. Wang Wenzhao, Hu Minqiang. Bundary element method for the calculation to three-dimensional linear magnetic field[J]. Transactions of China Electrote- chnical Society, 1987, 2: 6-11. [12] 王泽忠, 李亚莎, 邓春华. 基于球坐标的三维静电场曲边四边形边界元方法[J]. 电工技术学报, 2007, 22(4): 32-36. Wang Zezhong, Li Yasha, Deng Chunhua. Curve quadrangular BEM in 3-D electrostatic fieldds based on spherical systems[J]. Transactions of China Electrotechnical Society. 2007, 22(4): 32-36. [13] 张淮清, 俞集辉. 电磁场边值问题求解的径向基函数方法[J]. 高电压技术, 2010, 36(2): 531-536. Zhang Huaiqing, Yu Jihui. Radial basis function method for boundary value problems in electromagnetic field[J]. High Voltage Engineering, 2010, 36(2): 531-536.