Abstract:Gaussian process classifier based on Laplace approximation method (LGPC) is constructed. It can optimize the hyper parameters of the LGPC automatically, output classification results in probability, and be convenient to analyze problems’ uncertainty. Therefore, LGPC can overcome the inherent limitations of SVM whose regularization factors and kernel function parameters are difficult to determine. In this paper, performance of LGPC is analyzed and validated by typical classification datasets, and transformer fault diagnosing method based on LGPC is presented and described in details. Experimental results show that the diagnosing correctness ratios are higher when mean function adopts a constant function, covariance function adapts a full square exponential function and likelihood function adopts an error function. Compared with methods based on SVM, the proposed method has higher classification accuracy, which proves it is effective.
[1] Tang W H, Wu Q H. Condition monitoring and assessment of power transformers using computational intelligence[M]. New York: Springer-Verlag Press, 2011. [2] 朱德恒, 严璋, 谈克雄, 等. 电气设备状态监测与故障诊断技术[M]. 北京: 中国电力出版社, 2009. [3] 赵文清, 朱永利, 张小奇. 应用支持向量机的变压器故障组合预测[J]. 中国电机工程学报, 2008, 28(25): 14-19. [4] 董明, 孟源源, 徐长响, 等. 基于支持向量机及油中溶解气体分析的大型电力变压器故障诊断模型研究[J]. 中国电机工程学报, 2003, 23(7): 88-92. [5] 孙即祥. 现代模式识别[M]. 北京: 高等教育出版社, 2008. [6] 章剑光, 周浩, 项灿芳. 基于Super SAB神经网络算法的主变压器故障诊断模型[J]. 电工技术学报, 2004, 19(7): 49-52, 58. [7] 吴立增, 朱永利, 苑津莎. 基于贝叶斯网络分类器的变压器综合故障诊断方法[J]. 电工技术学报, 2005, 20(4): 45-51. [8] 尚万峰, 赵升吨, 申亚京. 遗传优化的最小二乘支持向量机在开关磁阻电机建模中的应用[J]. 中国电机工程学报, 2009, 29(12): 65-69. [9] 李春香, 张为民, 钟碧良. 最小二乘支持向量机的参数优化算法研究[J]. 杭州电子科技大学学报, 2010, 30(4): 213-216. [10] 李中, 苑津莎, 张利伟. 基于自组织抗体网络的电力变压器故障诊断[J]. 电工技术学报, 2010, 25(10): 200-206. [11] Seeger M. Gaussian processes for machine learning[J]. International Journal of Neural Systems, 2004, 14(2): 69-106. [12] Rasmussen C E, Williams C K I. Gaussian processes for machine learning[M]. Cambridge/London: The MIT Press, 2006. [13] Girolami M, Rogers S. Variational Bayesian multinomial probit regression with Gaussian process priors[J]. Neural Computation, 2006, 18(8): 1790-1817. [14] Kuss M, Rasmussen C E. Assessing approximate inference for binary Gaussian process classification[J]. Journal of Machine Learning Research, 2005, 6: 1679-1704. [15] Nickisch H, Rasmussen C E. Approximations for binary Gaussian process classification[J]. Journal of Machine Learning Research, 2008, 9: 2035-2078. [16] Bermak A, Belhouari S B. Bayesian learning using Gaussian process for gas identification[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55(3): 787-792. [17] Bishop C M. Pattern recognition and machine learning[M]. Singapore: Springer, 2006. [18] MacKay J C. The evidence framework applied to classification networks[J]. Neural Computation, 1992, 4(5): 720-736. [19] Williams C K I, Barber D. Bayesian classification with Gaussian processes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(12): 1342-1351.