Abstract:This paper presents a new approach based on a combination of interpolating windowed FFT and discrete wavelet transform. In this approach, the fundamental frequency is firstly estimated, using interpolating windowed FFT. Then the input sampled signal is windowed and modulated by two signals with the same frequency as the harmonic frequency. Therefore the harmonic component is transformed into two dc-like components. These components are separated out by discrete wavelet transform to estimate harmonic phase angle and amplitude. Simulation and experimental results prove that the proposed algorithm can be used to estimate accurately harmonic parameters of power signal heavily distorted by noises, especially harmonic phase. Realization on the evaluation board justifies its real-time applicability for harmonic analysis in power systems.
张鹏, 李红斌. 一种基于离散小波变换的谐波分析方法[J]. 电工技术学报, 2012, 27(3): 252-259.
Zhang Peng, Li Hongbin. A Novel Algorithm for Harmonic Analysis Based on Discrete Wavelet Transforms. Transactions of China Electrotechnical Society, 2012, 27(3): 252-259.
[1] Jeefzngs D I, Linders J R. Unique aspects of distribution system harmonics due to high impedance ground faults[J]. IEEE Transactions on Power Delivery, 1990, 5(2): 1086-1094. [2] David C Yu, Shoukat H Khan. An adaptive high and low impedance fault detection method[J]. IEEE Transactions on Power Delivery, 1994, 9(4): 1812-1821. [3] Carl L Benner, B Don Russell. Practical high impedance fault detection on distribution feeders[J]. IEEE Transactions on Industry Applications, 1997, 33(3): 635-640. [4] Grandke T. Interpolation algorithms for discrete Fourier transform of weighted signals[J]. IEEE Transactions on Instrumentation and Measurement, 1983, 32(2): 350-355. [5] Harri F J. On the use of windows for harmonic analysis with the discrete Fourier transform[J]. Proceedings of IEEE, 1978, 66: 51-83. [6] Rife D C, Vincent G A. Use of the discrete Fourier transform in the measurement of frequencies and levels of tones[J]. The Bell System Technical Journal, 1970, 49(2): 197-228. [7] Nuttall A H. Some windows with very good side lobe behavior[J]. IEEE Transaction on Acoustic Speech, Signal Process, 1981, 29(1): 84-91. [8] 潘文, 钱俞寿, 周鹗. 基于加窗插值FFT的电力谐波测量理论(I)—窗函数研究[J]. 电工技术学报, 1994, 9(1): 50-54. Pan Wen, Qian Yushou, Zhou E. Power harmonics measurement based on windows and interpolated FFT(I)—study of windows[J]. Transactions of China Electrotechnical Society, 1994, 9(1): 50-54. [9] 潘文, 钱俞寿, 周鹗. 基于加窗插值FFT 的电力谐波测量理论 (II)—双插值FFT 理论[J]. 电工技术学报, 1994, 9(2): 53-56. Pan Wen, Qian Yushou, Zhou E. Power system harmonic measurement based on windows and interpolated FFT(II) — dual interpolated FFT algorithms[J]. Transactions of China Electrotechnical Society, 1994, 9(2): 53-56. [10] Zhang Fusheng, Geng Zhongxing, Yuan Wei. The algorithm of interpolating windowed FFT for harmonic analysis of electric power system[J]. IEEE Transaction on Power Delivery, 2001, 16(2): 160-164. [11] 吴静, 赵伟. 一种用于分析电网谐波的多谱线插值算法[J]. 中国电机工程学报, 2006, 26(8): 55-59. Wu Jing, Zhao Wei. An algorithm of MICA for analyzing harmonics in power system[J]. Proceedings of the CSEE, 2006, 26(8): 55-59. [12] 律方成, 徐志钮, 李和明. 结合粗调和细调的电力系统谐波分析算法[J]. 电工技术学报, 2007, 22(6): 114-120. Lü Fangcheng, Xu Zhiniu, Li Heming. An algorithm with coarse adjustment and fine adjustment for power system harmonics analysis[J]. Transactions of China Electrotechnical Society, 2007, 22(6): 114-120. [13] 温和, 滕召胜, 卿柏元. Hanning自卷积窗及其在谐波分析中的应用[J]. 电工技术学报, 2009, 24(2): 164-169. Wen He, Teng Zhaosheng, Qing Baiyuan. Hanning Self-convolution windows and its application to harmonic analysis[J]. Transactions of China Electrotechnical Society, 2009, 24(2): 164-169. [14] 曾博, 滕召胜, 温和, 等. 莱夫-文森特窗插值FFT 谐波分析方法[J]. 中国电机工程学报, 2009, 29(10): 115-120. Zeng Bo, Teng Zhaosheng, Wen He, et al. An Approach for harmonic analysis based on Rife-Vincent window interpolation FFT[J]. Proceedings of the CSEE, 2009, 29(10): 115-120. [15] 高云鹏, 滕召胜, 温和, 等. 凯塞窗插值FFT的电力谐波分析与应用[J]. 中国电机工程学报, 2010, 30(4): 43-48. Gao Yunpeng, Teng Zhaosheng, Wen He, et al. Harmonic analysis based on Kaiser window interpolation FFT and its application[J]. Proceedings of the CSEE, 2010, 30(4): 43-48. [16] Sidney Burrus C, Ramesh A Gopnath, Haitao Guo. Introduction to wavelets and wavelet transforms: a primer[M]. United States: Prentice Hall, 1997. [17] Paulo F Ribeiro. Time-varying waveform distortions in power systems[M]. United States: Wiley-IEEE Press, 2009. [18] Pham V L, Wong K P. Wavelet-transform-based algorithm for harmonic analysis of power system waveforms[J]. IEE Proceedings-Generation, Transmission and Distribution, 1999, 146(3): 249-254. [19] Eren L, Devaney M J. Calculation of power system harmonics via wavelet packet decomposition in real time metering[C]. IEEE Instrumentation and Measurement Technology Conference, Anchorage, AK, 2002: 1643-1647. [20] Julio Barros, Ramon I Diego. Analysis of harmonics in power systems using the wavelet-packet[J]. IEEE Transaction on Instrument and Measurement, 2008, 57(1): 63-69. [21] Vatansever F, Ozdemir A. A new approach for measuring RMS value and phase angle of fundamental harmonic based on wavelet packet transform[J]. Electric Power System Research, 2008, 78: 74-79. [22] Pedro M Ramos, A Cruz Serra. Comparison of frequency estimation algorithms for power quality assessment[J]. Measurement, 2009, 42: 1312-1317. [23] 焦新涛, 丁康. 加窗频谱分析的恢复系数及其求法[J]. 汕头大学学报(自然科学版), 2003, 18(3): 26-30, 38. Jiao Xintao, Ding Kang. Resetting moduli and solutions in windowing spectrum analysis[J]. Journal of Shantou University (Natural Science Edition), 2003, 18(3): 26-30, 38. [24] IEEE Std—519—1992. Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems[S]. IEEE, New York, USA, 1992. [25] The Institute of Electrical and Electronics Engineers. IEEE Std. 1159—1995 IEEE recommended practice for monitoring electric power quality[S]. New York, 1995. [26] GB/T15945电能质量: 电力系统频率允许偏差[S].