Abstract:The dynamic performance of three-phase digital phase-locked loop (PLL) based on synchronous reference frame depends on the proportional and integral (PI) parameters, compensation errors of angular frequency and phase angle static bias. The nonlinear model of the PLL is proved to be globally asymptotically stable with the design of Lyapunov function, which assures the validity of the PI parameters designed on the linear model. A grid phase sequence identification method based on zero-crossing detection is presented to guarantee the correct compensation of the angular frequency static bias. And the hysteresis voltage for zero-crossing detection is deduced to obtain the largest anti-interference margin. The initial phase angle is identified during phase sequence identification, and it could be used to compensate the phase angle static bias. Then the set-up time of the PLL could be greatly shortened to the waiting time of the zero-crossing and the set-up time of zero-crossing error due to the hysteresis voltage. Finally, the advantages mentioned above are verified by simulations and experiments.
洪小圆, 吕征宇. 基于同步参考坐标系的三相数字锁相环[J]. 电工技术学报, 2012, 27(11): 203-210.
Hong Xiaoyuan, Lü Zhengyu. Three-Phase Digital Phase-Locked Loop Based on Synchronous Reference Frame. Transactions of China Electrotechnical Society, 2012, 27(11): 203-210.
[1] Guan Chyun Hsieh, Hung James C. Phase-locked loop techniques-a survey[J]. IEEE Transactions on Industrial Electronics, 1996, 43(6): 609-615. [2] Daniel Abramovitch. Phase-locked loops: a control centric tutorial [C]. Proceedings of the American Control Conference, Anchorage, AK USA, 2002. [3] 李亚斌, 彭咏龙, 李和明. 自采样比例积分控制全数字锁相环的性能分析和实现[J]. 中国电机工程学报, 2005, 25(18): 64-69. Li Yabin, Peng Yonglong, Li Heming. The implementation and analysis of a self-sampling PI control all digital phase-locked loop[J]. Proceedings of the CSEE, 2005, 25(18): 64-69. [4] 孔雪娟, 罗昉, 康勇. 基于周期控制的逆变器全数字锁相环的实现和参数设计[J]. 中国电机工程学报, 2007, 27(1): 60-64. Kong Xuejuan, Luo Fang, Kang Yong. Implement and parameter design of DPLL for invertors based on cycle control[J]. Proceedings of the CSEE, 2007, 27(1): 60-64. [5] 杨勇, 阮毅, 叶斌英. 基于锁相环和虚拟电网磁链的三相并网逆变器[J]. 电工技术学报, 2010, 25(4): 109-114. Yang Yong, Ruan Yi, Ye Binying. Three-phase grid-connected inverters based on PLL and virtual grid flux [J]. Transactions of China Electro-technical Society, 2010, 25(4): 109-114. [6] 龚锦霞, 解大, 张延迟. 三相数字锁相环的原理及性能[J]. 电工技术学报, 2009, 24(10): 94-99, 121. Gong Jinxia, Xie Da, Zhang Yanchi. Principle and performance of the three-phase digital phase-locked loop[J]. Transactions of China Electrotechnical Society, 2009, 24(10): 94-99, 121. [7] 庞浩, 俎云霄, 王赞基. 一种新型的全数字锁相环[J]. 中国电机工程学报, 2003, 23(2): 37-41, 131. Pang Hao, Zu Yunxiao, Wang Zanji. A new design of all digital phase-locked loop[J]. Proceedings of the CSEE, 2003, 23(2): 37-41, 131. [8] 高金文, 温旭辉, 陈静薇. 新型锁相环定子磁链观测器[J]. 中国电机工程学报, 2007, 27(18): 41-47. Gao Jinwen, Wen Xuhui, Chen Jingwei. Novel motor stator flux observer based on PLL[J]. Proceedings of the CSEE, 2007, 27(18): 41-47. [9] 冯志华, 刘强, 刘永斌. 基于锁相环的变频器同步跟踪实验[J]. 电工技术学报, 2006, 21(11): 96-100. Feng Zhihua, Liu Qiang, Liu Yongbin. Experimental study on synchronized tracing control of variable frequency devices based on phase locked loop[J]. Transactions of China Electrotechnical Society, 2006, 21(11): 96-100. [10] Timbus A, Teodorescu R, Blaabjerg F, et al. Synchronous methods for three phase distributed power generation systems, an overview and evaluation[C]. Proceedings of the Power Electronics Specialists Conference, Recife, Brazil, 2005. [11] Vikram Kaura, Vladimir Blasko. Operation of a phase locked loop system under distorted utility conditions[J]. IEEE Transactions on Industry Applications, 1997, 33(1): 58-63. [12] Amuda L N, Cardoso Filho B J, Silva S M, et al. Wide bandwidth single and three-phase PLL structures for grid-tied PV systems[C]. Proceedings of the Photovoltaic Specialists Conference, Anchorage, AK USA, 2000. [13] Chung Se Kyo. A phase tracking system for three phase utility interface inverters[J]. IEEE Transactions on Power Electronics, 2000, 15(3): 431-438. [14] Chung Se Kyo. Phase-locked loop for grid-connected three-phase power conversion systems[J]. IEE Proceedings on Electric Power Applications, 2000, 147(3): 213-219. [15] Katsuhiko Ogata. Modern control engineering[M]. 5版. 北京: 电子工业出版社, 2007. [16] Yabramovitch Daniel. Lyapunov redesign of analog phase-lock loops[J]. IEEE Transactions on Communications, 1990, 38(12): 2197-2202. [17] Dan Simon, ElSherief Hossny. Lyapunov stability analyses of digital phase-locked loops[C]. Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, San Antonio, TX USA, 1994. [18] Daniel Abramovitch. Lyapunov redesign of classical digital phase-lock loops[C]. Proceedings of the American Control Conference, Denver, Colorado, USA, 2003. [19] Anders Rantzer. Almost global stability of phase-locked loops[C]. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida USA, 2001. [20] Khalil Hassan K. Nonlinear systems [M]. 3版. 北京: 电子工业出版社, 2007. [21] 林海雪. 电压电流频率和电能质量国家标准应用手册[M]. 北京: 中国电力出版社, 2001. [22] 中国国家标准化管理委员会. GB/T 14549—1993 电能质量 公用电网间谐波[S]. 北京: 中国标准出版社, 1993.