Abstract:Automatic generation control (AGC) is very important to power system operation. But for reducing its action number, it should be set a dead band for governor, as a result to increase its complexity. In this paper a new simulation model considering the effect of governor dead band nonlinearity by using the describing function approach for automatic generation control studies of two-area system is proposed. And an improvement particle swarm optimization algorithm used to optimum the parameters of the integral controller and area frequency deviation coefficient. Through the simulation analysis of the automatic generation control system of two-area interconnected power system, the results show that the new proposed model can actually enough to express the performances of the automatic generation control system, and that this method is effective.
温步瀛. 计及调速器死区影响的两区域互联电力系统AGC研究[J]. 电工技术学报, 2010, 25(9): 176-182.
Wen Buying. Research on AGC of Two-Area Interconnected Power System Considering the Effect of the Governor Dead Band. Transactions of China Electrotechnical Society, 2010, 25(9): 176-182.
[1] 张明锐, 王为. 电力系统短期预报频率控制[J]. 电工技术学报, 2002, 17(1): 96-100. [2] 周罡, 吕剑虹, 韦红旗, 等. 自动发电控制优化控制策略研究与应用[J]. 中国电力, 2004, 37(1): 57- 61. [3] 刘梅招, 杨莉, 甘德强, 等. 存在均匀通信时滞的AGC稳定极限计算[J]. 电力系统自动化, 2006, 30 (19): 7-12. [4] 高宗和, 滕贤亮, 张小白. 互联电网CPS标准下的自动发电控制策略[J]. 电力系统自动化, 2005, 29 (19): 40-44. [5] Olie I Elgerd, Charles E Fosha. Optimum megawatt- frequency control of multi-area electric energy system [J]. IEEE Trans. Power Apparatus Syst, 1970, 89 (4): 556-563. [6] Janardan Nanda, Ashish Mangla, Sanjay Suri. Some new findings on automatic generation control of an interconnected hydrothermal system with conventional controllers[J]. IEEE Transactions on Energy Conversion, 2006, 21(1): 187-194. [7] Janardan Nanda, Ashish Mangla. Automatic generation control of an interconnected hydro-thermal system using conventional integral and fuzzy logic controller[C]. IEEE International Conference Electric Utility Deregulation, Restructuring and Power Technologies, Hong Kong, April 2004, 1: 372- 377. [8] 李平康. 火电厂AGC及其可视化仿真实现[J]. 华北电力技术, 2000(10): 10-13. [9] 戴义平, 赵婷, 高林. 发电机组参与电网一次调频的特性研究[J]. 中国电力, 2006, 39(11): 37-41. [10] 郭钰锋, 徐志强, 于达仁, 等. 考虑调频死区的二次调频控制回路设计[J]. 中国电机工程学报, 2004, 24(10): 77-81. [11] 刘梦欣, 王杰, 陈陈. 电力系统频率控制理论与发展[J]. 电工技术学报, 2007, 22(11): 135-144. [12] 沈浩, 夏群力, 祁载康, 等. 速度追踪制导控制系统描述函数法设计[J]. 北京理工大学学报, 2007, 27 (7): 590-593. [13] 曾宗桢, 张小安, 肖飞. 电液位置系统的非线性校正与描述函数法分析[J]. 机床与液压, 2005(10): 110-112. [14] Mukherjee V, Ghoshal S P. Comparison of intelligent fuzzy based AGC coordinated PID controlled and PSS controlled AVR system[J]. Electric Power and Energy Systems, 2007, 29(3): 679-689. [15] Shayeghi H, Jalili A, Shayanfar H A. Multi-stage fuzzy load frequency control using PSO[J]. Energy Conversion and Management, 2008, 49(10): 2570- 2580.