Abstract:Single pulse and multi-pulse glow discharges in helium at atmospheric pressure are carried out with dielectric barrier electrodes. By taking fast images of the discharges using an intensified charge couple device, the modes of discharges are investigated. Based on the measured current and the applied voltage, the discharge voltage across the gas gap, discharge current, accumulated charges on dielectric surface and the voltage-current characteristics are calculated. The application of voltage-current characteristics to discharge mode diagnosis is investigated, and physical mechanisms of discharges are discussed. The results show that the applied voltage and accumulated charges on dielectric surface due to discharge result in multiple current pulses, and the increase of applied voltage contributes to discharge, while accumulation of surface charges restrains to discharge. The contribution action of increasing applied voltage plays a master role, the restrain action of the accumulated charges can not surpass the contribution action, and thus the discharge does not extinguish among the pulses. The current-voltage characteristic, which is positive means the discharge is a Townsend discharge and negative means a glow one, can only diagnose the discharge mode of the first pulse. In the case of subsequent pulses, the characteristic can not diagnose the discharge mode.
郝艳捧, 涂恩来, 阳林, 戴栋. 基于气隙伏安特性研究大气压氦气辉光放电的模式和机理[J]. 电工技术学报, 2010, 25(7): 24-30.
Hao Yanpeng, Tu Enlai, Yang Lin, Dai Dong. Mode and Mechanism of Multi-Pulse Glow Discharges in Helium at Atmospheric Pressure Based on Voltage-Current Characteristics. Transactions of China Electrotechnical Society, 2010, 25(7): 24-30.
[1] Massines F, Gherardi N, Naude N, et al. Glow and Townsend dielectric barrier discharge in various atmosphere[J]. Plasma Phys. Control Fusion, 2005, 47: 577-588.
[2] Luo H Y, Liang Z, Lv B, et al. Observation of the transition from a Townsend discharge to a glow discharge in helium at atmospheric pressure[J]. Appl. Phys. Lett., 2007, 91: 221504.
[3] Lv B, Wang X X, Luo H Y, et al. Characterizing uniform discharge in atmospheric helium by numerical modeling[J]. Chinese Physics B, 2009, 18(2): 646-651.
[4] Radu I, Bartnikas R, Wertheimer M R. Diagnostics of dielectric barrier discharges in noble gases: atmospheric pressure glow and pseudoglow discharges and spatio-temporal patterns[J]. IEEE Transactions on Plasma Science, 2003, 31(3): 411-421.
[5] Golubovskii Y B, Maiorov V A, Behnke J, et al. Modelling of the homogeneous barrier discharge in helium at atmospheric pressure[J]. Phys. D: Appl. Phys, 2003, 36: 39-49.
[6] Mangolini L, Orlov K, Kortshagen U, et al. Radial structure of a low-frequency atmospheric-pressure glow discharge in helium[J]. App. Phys. Lett., 2002, 80:1722-1724.
[7] Mangolini L, Andorson C, Heberlein J, et al. Effects of current limitation through the dielectric in atmospheric pressure glows in helium[J]. Phys. D: Appl. Phys. 2004, 37: 1021.
[8] 王艳辉, 王德真. 大气压下多脉冲均匀介质阻挡放电的研究[J]. 物理学报, 2005, 54(3): 1295-1300.
[9] Wang D Z, Wang Y H, Liu C S. Multipeak behavior and mode transition of a homogeneous barrier discharge in atmospheric pressure helium[J]. Thin Solid Films 2006, 506: 384-388.
[10] Zhang Y, Gu B, Peng X W, et al. Multiple current peaks and mode conversion of atmospheric pressure glow dielectric barrier discharge in helium[J]. Thin Solid Films, 2008, 516: 7547-7554.
[11] 张燕, 顾彪. 常压氦气和氮气均匀介质阻挡放电的伏安特性[J]. 物理学报, 2009, 58(8): 5532-5538.
[12] 郝艳捧, 阳林, 涂恩来, 等. 试验研究大气压氦气介质阻挡多脉冲辉光放电的模式和机理[J].物理学报, 2010, 59(4): 393-399.
[13] 胡孝勇. 气体放电及其等离子体[M]. 哈尔滨: 哈尔滨工业大学出版社, 1994.