|
|
Optimization of CLLLC Resonant Converter Modeling by MOSFET Output Capacitance |
Zhang Xinwen1, Liu Wenze1, Yang Shude2, Liu Bailin1 |
1. School of Electrical and Information Engineering North Minzu University Yinchuan 750021 China; 2. College of Electrical Energy and Power Engineering Yangzhou University Yangzhou 225127 China |
|
|
Abstract The fundamental harmonic approximation (FHA) modeling method is commonly used to analyze CLLLC resonant converters because of its simple operation and high accuracy. The FHA method uses the fundamental wave component of the input and output voltage of the resonator, so the circuit topology analysis of the CLLLC resonant converter is transformed into the analysis of the sinusoidal steady-state circuit. The voltage gain model of the CLLLC resonant converter established by the FHA modeling method can be used to analyze the characteristics or design the parameters of the CLLLC resonant converter. However, in the traditional FHA modeling method, the influence of MOSFET output capacitance on the midpoint voltage of the H-bridge arm on the output side is not considered when the secondary current of the transformer is zero and MOSFET is at dead time. When the switching frequency is lower than the resonance frequency (under-resonance condition), the accuracy of the midpoint voltage model of the H-bridge arm needs to be further improved. The reason that the model accuracy of the traditional FHA modeling method is lower with the decrease of switching frequency is analyzed when the CLLLC resonant converter operates under the under-resonance condition. Two operating states of the CLLLC resonant converter are provided: the current in the secondary winding of the transformer is zero, and the MOSFET is at dead time. The transient equations of the two operating states are established using the time-domain analysis method. The voltage expression of the MOSFET output capacitance is derived by solving the transient equations, and the voltage at the middle point of the H-bridge on the output side of the CLLLC resonant converter is expressed as a complete function. Furthermore, a more precise method for calculating the RMS current on the secondary side of the transformer is given, and a more accurate formula for calculating the output equivalent load is obtained. The optimized calculation formula of the voltage at the midpoint of the H-bridge arm on the output side of the CLLLC resonant converter and the output equivalent load contains the variables of switching frequency, resonant frequency, output voltage, and MOSFET output capacitance. The obtained voltage gain model can describe the actual gain of the converter more accurately. Therefore, the accuracy of the FHA model can be improved when the CLLLC resonant converter is in under-resonant conditions. Based on the optimized voltage gain model, an accurate parameter design method is presented to provide theoretical support for the parameter design of the CLLLC resonant converter. Finally, the circuit simulation model and an experimental system of the CLLLC resonant converter are set up with an input voltage of 380 V and power of 1 kW. By comparing the relative errors of output voltage, the accuracy of the proposed optimization method is verified. The results show that: (1) Under simulation conditions, the maximum relative error of the traditional FHA method is 3.2 times the optimized FHA method. (2) Under experimental conditions, the maximum relative error of the traditional FHA method is 1.42 times the optimized FHA method.
|
Received: 13 November 2023
|
|
|
|
|
[1] 朱小全, 刘康, 叶开文, 等. 基于SiC器件的隔离双向混合型LLC谐振变换器[J]. 电工技术学报, 2022, 37(16): 4143-4154. Zhu Xiaoquan, Liu Kang, Ye Kaiwen, et al.Isolated bidirectional hybrid LLC converter based on SiC MOSFET[J]. Transactions of China Electrotechnical Society, 2022, 37(16): 4143-4154. [2] Zhao Lie, Pei Yunqing, Wang Laili, et al.Design methodology of bidirectional resonant CLLC charger for wide voltage range based on parameter equivalent and time domain model[J]. IEEE Transactions on Power Electronics, 2022, 37(10): 12041-12064. [3] 周国华, 王淇, 邓伦博. 宽增益高效率CLLLC变换器的变频双移相调制策略[J]. 电工技术学报, 2024, 39(8): 2511-2522. Zhou Guohua, Wang Qi, Deng Lunbo.Variable- frequency dual-phase-shift modulation strategy for CLLLC converter with wide voltage gain and high efficiency[J]. Transactions of China Electrotechnical Society, 2024, 39(8): 2511-2522. [4] 孙城皓, 孙秋野, 王睿, 等. 基于拓展型双曲正切函数的全桥LLC变换器大信号建模方法[J]. 电工技术学报, 2023, 38(1): 234-245. Sun Chenghao, Sun Qiuye, Wang Rui, et al.Large- signal modeling method of full-bridge LLC converter based on extended hyperbolic tangent function[J]. Transactions of China Electrotechnical Society, 2023, 38(1): 234-245. [5] 李福, 邓红雷, 张国驹, 等. 一种中间电容谐振型级联双向DC-DC变换器[J]. 电工技术学报, 2022, 37(20): 5253-5266. Li Fu, Deng Honglei, Zhang Guoju, et al.A cascaded bidirectional DC-DC converter with intermediate capacitor resonance[J]. Transactions of China Electro- technical Society, 2022, 37(20): 5253-5266. [6] 廖嘉睿, 杭丽君, 但志敏, 等. 宽范围CLLLC双向同步整流数字控制方法[J]. 电工技术学报, 2022, 37(14): 3632-3642. Liao Jiarui, Hang Lijun, Dan Zhimin, et al.Digital control method of wide-range CLLLC bidirectional synchronous rectification[J]. Transactions of China Electrotechnical Society, 2022, 37(14): 3632-3642. [7] 王朝强, 曹太强, 郭筱瑛, 等. 三相交错并联双向DC-DC变换器动态休眠控制策略[J]. 电工技术学报, 2020, 35(15): 3214-3223. Wang Chaoqiang, Cao Taiqiang, Guo Xiaoying, et al.Dynamic dormancy control strategy of three-phase staggered parallel bidirectional DC-DC converter[J]. Transactions of China Electrotechnical Society, 2020, 35(15): 3214-3223. [8] 李俊杰, 吴红飞, 花文敏, 等. CLLC双向谐振变换器电感-变压器矩阵式一体化集成与优化设计[J]. 中国电机工程学报, 2022, 42(10): 3720-3729. Li Junjie, Wu Hongfei, Hua Wenmin, et al.Matrix inductor-transformer integration and optimization design for CLLC bidirectional resonant converter[J]. Proceedings of the CSEE, 2022, 42(10): 3720-3729. [9] 李小强, 马永超, 黄金伟, 等. 基于双脉宽调制的交错Boost集成型CLLLC谐振变换器宽增益控制策略[J]. 电工技术学报, 2022, 37(20): 5313-5323. Li Xiaoqiang, Ma Yongchao, Huang Jinwei, et al.Wide-gain-range control scheme for interleaved boost integrated CLLLC resonant converter based on dual pulse width modulation[J]. Transactions of China Electrotechnical Society, 2022, 37(20): 5313-5323. [10] Zou Shenli, Lu Jiangheng, Mallik A, et al.Bi-directional CLLC converter with synchronous rectification for plug-in electric vehicles[J]. IEEE Transactions on Industry Applications, 2018, 54(2): 998-1005. [11] Blake C, Bull C.IGBT or MOSFET: choose wisely[J]. International Rectifier, 2015, 19(2): 286-287. [12] 俞珊, 徐志望, 董纪清. 寄生电容对LLC谐振变换器的影响分析[J]. 电源学报, 2018, 16(2): 124-130. Yu Shan, Xu Zhiwang, Dong Jiqing.Analysis of impact of stray capacitance on LLC resonant converter[J]. Journal of Power Supply, 2018, 16(2): 124-130. [13] 陈启超, 纪延超, 王建赜, 等. MOSFET输出电容对CLLLC谐振变换器特性影响分析[J]. 电工技术学报, 2015, 30(17): 26-35. Chen Qichao, Ji Yanchao, Wang Jianze, et al.Analysis of the influence of MOSFET output capacitance on the bidirectional CLLLC resonant converter[J]. Transactions of China Electrotechnical Society, 2015, 30(17): 26-35. [14] 赵烈, 裴云庆, 刘鑫浩, 等. 基于基波分析法的车载充电机CLLC谐振变换器参数设计方法[J]. 中国电机工程学报, 2020, 40(15): 4965-4977. Zhao Lie, Pei Yunqing, Liu Xinhao, et al.Design methodology of CLLC resonant converters for electric vehicle battery chargers[J]. Proceedings of the CSEE, 2020, 40(15): 4965-4977. [15] 许景慧, 王跃, 李凯. CLLLC谐振型直流变换器参数设计研究[J]. 电气传动, 2021, 51(14): 13-17, 22. Xu Jinghui, Wang Yue, Li Kai.Research on parameter design of CLLLC resonant DC converter[J]. Electric Drive, 2021, 51(14): 13-17, 22. [16] 孙欣楠, 陈敏, 李博栋, 等. 基于电感比分析的CLLC谐振变换器效率优化[J]. 中国电机工程学报, 2021, 41(8): 2825-2834. Sun Xinnan, Chen Min, Li Bodong, et al.Efficiency optimization of CLLC resonant converter based on analysis of the ratio of inductances[J]. Proceedings of the CSEE, 2021, 41(8): 2825-2834. [17] Sankar A, Mallik A, Khaligh A.Extended harmonics based phase tracking for synchronous rectification in CLLC converters[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6592-6603. [18] 王菲菲, 张方禹, 戴慧纯, 等. 基于时域分析的CLLC双向谐振变换器优化设计[J]. 电力电子技术, 2019, 53(6): 80-82. Wang Feifei, Zhang Fangyu, Dai Huichun, et al.Optimal design of CLLC bi-directional resonant converter based on time domain analysis[J]. Power Electronics, 2019, 53(6): 80-82. [19] 赵子先, 康龙云, 于玮, 等. 基于简化时域模型的CLLC直流变换器参数设计[J]. 电工技术学报, 2022, 37(5): 1262-1274. Zhao Zixian, Kang Longyun, Yu Wei, et al.Parameter design method of CLLC DC-DC converter based on simplified time domain model[J]. Transactions of China Electrotechnical Society, 2022, 37(5): 1262-1274. [20] 詹昕明, 何震, 杭丽君, 等. CLLLC谐振电路模型改进方法研究[J]. 中国电机工程学报, 2023, 43(13): 5105-5116. Zhan Xinming, He Zhen, Hang Lijun, et al.Research on improvement method of CLLLC resonant circuit model[J]. Proceedings of the CSEE, 2023, 43(13): 5105-5116. |
|
|
|