|
|
Study on Virtual DC Generator-Based Ship High-Frequency and High-Peak Power Pulsed Loads Impact Damping Control Strategy |
Sun Dongyang, Li Shuang, Wang Junwu, Zhang Shuning |
School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin 150080 China |
|
|
Abstract Various pulsed loads are widely used in modern ship power systems. Herein, radar pulsed loads have high-frequency and high-amplitude power characteristics. The loading-unloading and frequent-state switching cause severe impacts on the ship power system with weak inertia and even cause the diesel generator set to oscillate and stop. However, more research is still needed on the impacts of high-frequency and high-peak pulsed loads on the stability of ship power systems and the disturbance mechanism. Furthermore, the problems of traditional passive suppression strategies, such as ship space waste, short service life, and lack of pulsed load multi-mode suppression capability, should be solved urgently. This paper designs a multi-mode pulsed disturbance suppression strategy based on virtual dc motor control (VDG) by analyzing the disturbance mechanism of high-frequency and high-peak pulse loads on ship power systems. Firstly, this paper establishes a mathematical model of typical pulsed loads. The power characteristics and their impacts of pulsed loads on ship power system stability and impact mechanism are analyzed. A supercapacitor shock suppression device is suggested to suppress pulse power. The feasibility of this suppression strategy is derived, and the structure and related parameters of the suppression device are designed. Secondly, by analyzing the operation mechanism of the virtual DC motor, the feasibility of improving the inertia of the bidirectional DC-DC converter by VDG control is determined. The small signal model and system transfer function of the bidirectional DC-DC converter are derived, and the effects of virtual rotational inertia and virtual damping on the stability of the suppression device are analyzed. Then, a suppression device control strategy suitable for steady-state operation and transient sudden changes of pulsed loads is proposed. Finally, based on the RT Box 3 semi-physical simulation platform, a ship power system model with a suppression device is built to verify the proposed control strategy. The simulation results show that: (1) the high-frequency and high-amplitude pulsed load is manifested as a high-amplitude long-term pulsating power on the generator side. Its loading, switching, unloading, and steady-state operation cause different degrees of power impacts on the ship power system, and its sudden addition and subtraction of load have the greatest impact on the ship power system. (2) Compared with the energy storage system with the traditional DC-DC converter, the supercapacitor shock suppression device based on VDG control has flexible and adjustable virtual rotational inertia and output power. Therefore, the energy storage system enhances the ship power system's ability to resist impact disturbances. (3) The proposed suppression strategy has a good suppression effect when the pulsed loads run in the full range of operating conditions. Especially in the case of sudden addition and unloading of pulsed loads, it can prolong the steady-state time of the generator. As a result, its power can be slowly increased to the rated value, and its speed and line voltage amplitude fluctuations are significantly reduced.
|
Received: 01 August 2023
|
|
|
|
|
[1] Faddel S, Saad A A, El Hariri M, et al.Coordination of hybrid energy storage for ship power systems with pulsed loads[J]. IEEE Transactions on Industry Applications, 2020, 56(2): 1136-1145. [2] Fang Sidun, Wang Yu, Gou Bin, et al.Toward future green maritime transportation: an overview of seaport microgrids and all-electric ships[J]. IEEE Transa- ctions on Vehicular Technology, 2020, 69(1): 207-219. [3] 刘正春, 朱长青, 王勇, 等. 带脉冲负载的独立电力系统源载耦合关系及功率分配[J]. 高电压技术, 2019, 45(4): 1161-1170. Liu Zhengchun, Zhu Changqing, Wang Yong, et al.Study on sourced-load coupling and power dis- tribution of isolated power system with pulsed load[J]. High Voltage Engineering, 2019, 45(4): 1161-1170. [4] 甄洪斌, 张晓锋, 沈兵, 等. 脉冲负荷对舰船综合电力系统的冲击作用研究[J]. 中国电机工程学报, 2006, 26(12): 85-88. Zhen Hongbin, Zhang Xiaofeng, Shen Bing, et al.Research on impact of pulsed power loads on naval integrated power system[J]. Proceedings of the CSEE, 2006, 26(12): 85-88. [5] 肖润龙, 王刚, 徐晨, 等. 含脉冲负载的中压直流综合电力系统的无迹卡尔曼动态状态估计方法[J]. 中国电机工程学报, 2020, 40(23): 7555-7566. Xiao Runlong, Wang Gang, Xu Chen, et al.An unscented Kalman filter based dynamic state estimation for the medium-voltage DC integrated power system with pulse load[J]. Proceedings of the CSEE, 2020, 40(23): 7555-7566. [6] 赵志魁, 徐晔, 黄克峰, 等. 脉冲负载下模糊PID调速器控制柴油发电机的研究[J]. 电气技术, 2021, 22(9): 1-6. Zhao Zhikui, Xu Ye, Huang Kefeng, et al.Research on fuzzy-PID governor controlling diesel generator under pulsed load[J]. Electrical Engineering, 2021, 22(9): 1-6. [7] 袁利国, 曾凡明, 沈兵, 等. 脉冲负载柴油发电机组的设计及试验研究[J]. 武汉理工大学学报 (交通科学与工程版), 2010, 34(1): 158-161. Yuan Liguo, Zeng Fanming, Shen Bing, et al.Design and test research on diesel generating set under pulsed load[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2010, 34(1): 158-161. [8] 孙勇, 林松, 卢胜利, 等. 相控阵雷达阵面供电系统功率波动机理研究[J]. 现代雷达, 2021, 43(12): 92-99. Sun Yong, Lin Song, Lu Shengli, et al.A study on power fluctuation mechanism of phased array radar power system[J]. Modern Radar, 2021, 43(12): 92-99. [9] 严鋆, 王金全, 黄克峰, 等. 脉冲功率负载等效拓扑及潮流计算模型分析[J]. 电工技术学报, 2018, 33(23): 5523-5531. Yan Jun, Wang Jinquan, Huang Kefeng, et al.Analysis of equivalent topology and power-flow calculation model for pulsed power load[J]. Transa- ctions of China Electrotechnical Society, 2018, 33(23): 5523-5531. [10] 李启国. 超级电容器储能脉冲电源的研究[D]. 哈尔滨: 哈尔滨工业大学, 2008. [11] 范原. 脉冲负载直流变换器输出动态响应的研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. [12] 孙磊, 黄文焘, 邰能灵, 等. 船载脉冲功率系统动态过程建模及其变换器参数优化[J]. 电力自动化设备, 2023, 43(4): 54-61, 77. Sun Lei, Huang Wentao, Tai Nengling, et al.Dynamic process modeling and converter parameter opti- mization of marine based pulsed power system[J]. Electric Power Automation Equipment, 2023, 43(4): 54-61, 77. [13] 庞宇, 黄文焘, 吴骏, 等. 船舶大功率脉冲负载抗冲击供电系统[J]. 上海交通大学学报, 2021, 55(10): 1197-1209. Pang Yu, Huang Wentao, Wu Jun, et al.Surge- suppression power supply system for ship high power pulse loads[J]. Journal of Shanghai Jiao Tong University, 2021, 55(10): 1197-1209. [14] 陈宇航, 王刚. 含脉冲负载的综合电力系统运行特性分析[J]. 船电技术, 2016, 36(6): 1-5. Chen Yuhang, Wang Gang.Operation characteristics of integrated power system with pulse load[J]. Marine Electric & Electronic Engineering, 2016, 36(6): 1-5. [15] 赵凡琪, 孙国亮. 脉冲型负载对船舶电网稳定性影响的仿真研究[J]. 船舶, 2020, 31(5): 59-68. Zhao Fanqi, Sun Guoliang.Influence of pulse load on stability of ship power grid[J]. Ship & Boat, 2020, 31(5): 59-68. [16] 高雪平, 付立军, 纪锋, 等. 含脉冲负载的综合电力系统储能优化配置研究[J]. 国防科技大学学报, 2022, 44(6): 81-88. Gao Xueping, Fu Lijun, Ji Feng, et al.Research on optimal configuration of energy storage in integrated power system with pulse load[J]. Journal of National University of Defense Technology, 2022, 44(6): 81-88. [17] 杨帆, 李林, 朱建鑫, 等. 面向高峰均比低频脉冲功率负载的脉冲电流补偿器及其控制方法[J]. 电工技术学报, 2022, 37(16): 4193-4201. Yang Fan, Li Lin, Zhu Jianxin, et al.A pulsed current compensator and control strategy for high peak- to-average-ratio low frequency pulsed load[J]. Transactions of China Electrotechnical Society, 2022, 37(16): 4193-4201. [18] 童林, 许金, 吴振兴, 等. 脉冲功率超级电容冲击平抑装置容量计算方法[J]. 船电技术, 2016, 36(9): 72-76. Tong Lin, Xu Jin, Wu Zhenxing, et al.Design of a large pulse power super-capacitor energy storage system[J]. Marine Electric & Electronic Engineering, 2016, 36(9): 72-76. [19] 李轩, 李永丽, 常晓勇. 基于精确线性化理论的超级电容冲击平抑装置的非线性控制算法[J]. 电工技术学报, 2016, 31(21): 12-20. Li Xuan, Li Yongli, Chang Xiaoyong.Nonlinear control algorithm for super capacitor energy storage system based on exact linearization theory[J]. Transactions of China Electrotechnical Society, 2016, 31(21): 12-20. [20] 张泽华, 宋桂英, 张晓璐, 等. 考虑恒功率负载的直流微电网稳定性与鲁棒性控制策略[J]. 电工技术学报, 2023, 38(16): 4391-4405. Zhang Zehua, Song Guiying, Zhang Xiaolu, et al.Stability and robustness control strategy of DC microgrid considering constant power load[J]. Transactions of China Electrotechnical Society, 2023, 38(16): 4391-4405. [21] 施天灵, 汪飞, 张圣祺, 等. 直流船舶综合电力系统中混合储能的精确功率分配策略研究[J]. 电源学报, 2020, 18(6): 12-19. Shi Tianling, Wang Fei, Zhang Shengqi, et al.Research on accurate power distribution strategy for hybrid energy storage in DC shipboard integrated power system[J]. Journal of Power Supply, 2020, 18(6): 12-19. [22] 马伟明, 鲁军勇. 电磁发射技术的研究现状与挑战[J]. 电工技术学报, 2023, 38(15): 3943-3959. Ma Weiming, Lu Junyong.Research progress and challenges of electromagnetic launch technology[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 3943-3959. [23] 周美权, 徐晔, 黄克峰, 等. 虚拟同步发电机带脉冲负载运行特性研究[J]. 电气技术, 2022, 23(6): 59-68. Zhou Meiquan, Xu Ye, Huang Kefeng, et al.Operating characteristics of virtual synchronous generator with pulse load[J]. Electrical Engineering, 2022, 23(6): 59-68. [24] 樊靖轩, 施佳楠, 徐子梁, 等. 基于GaN的开关线性复合高速随动脉冲负载直流变换器[J]. 电工技术学报, 2024, 39(6): 1818-1829. Fan Jingxuan, Shi Jianan, Xu Ziliang, et al.High speed switching-linear hybrid followed-up pulse load DC converter based on GaN device[J]. Transactions of China Electrotechnical Society, 2023, 2024, 39(6): 1818-1829. [25] 孙勇, 林松. 相控阵雷达发射单元供电建模及特性研究[J]. 现代雷达, 2020, 42(9): 80-85, 90. Sun Yong, Lin Song.A study on power supply model and characteristic of phased array radar transmitting unit[J]. Modern Radar, 2020, 42(9): 80-85, 90. [26] 董保路. 舰载多功能相控阵雷达资源调度仿真技术研究及实现[D]. 西安: 西安电子科技大学, 2018. [27] 唐尧, 张进, 张祥瑞. 美国海基弹道导弹预警观测平台发展现状及思考[J]. 船舶, 2019, 30(4): 99-107. Tang Yao, Zhang Jin, Zhang Xiangrui.Present status and consideration on development of pre-warning observation platform for US sea-based ballistic missile[J]. Ship & Boat, 2019, 30(4): 99-107. |
|
|
|