|
|
Torque Sharing Function Control Strategy for Switched Reluctance Motor Based on Active Disturbance Rejection Sliding Mode Control |
Li Zonglin1,2,3,4, Chen Hao1,2,3,4, Qi Yong5, Wang Guanjun6, Ge Kai7 |
1. School of Electrical Engineering China University of Mining and Technology Xuzhou 221116 China; 2. International Joint Research Center of Central and Eastern European Countries on New Energy Electric Vehicle Technology and Equipment Xuzhou 221008 China; 3. International Cooperation Joint Laboratory of New Energy Power Generation and Electric Vehicles of Jiangsu Province Colleges and Universities Xuzhou 221008 China; 4. Xuzhou Key Laboratory of New Energy Electric Vehicle Technology and Equipment Xuzhou 221008 China; 5. School of Computer Science and Engineering Nanjing University of Technology Nanjing 210094 China; 6. Wuxi Inspection and Testing Certification Research Institute Wuxi 214101 China; 7. Automotive Engineering Research Institute Nanjing Automobile Group Nanjing 211103 China |
|
|
Abstract The research of new energy electric vehicles is currently a hot topic. Switched reluctance motors (SRM) are applied in electric vehicles due to their simple structure, robust fault tolerance, and ease of control. Among them, motor torque ripple and system response speed are critical indicators to measure the performance of motor drive systems. Sliding mode control is a nonlinear algorithm with the advantages of fast response speed and strong robustness, including sliding mode approach law and sliding mode surface. The sign function used in the traditional exponential approach law can cause system oscillation and large chattering in the control system. The smooth function is used instead of the sign function, and the system state variable is introduced to improve control flexibility. At the same time, an improved integral sliding surface is proposed to improve the convergence of the traditional integral sliding surface. Because of the nonlinearity, the motor’s load torque and inherent parameters significantly affect the operation of the motor under variable speed and load conditions. Therefore, the active disturbance rejection extended state observer (ADRESO) is used as a feedforward compensation for the sliding mode speed controller to adjust the uncertain parameters and load torque of the motor. The design of the ADRESO does not require an accurate mathematical model of the motor, and it can ensure the stability of the system under complex operating conditions and has strong robustness. Experimental results of an actual switched reluctance motor show that under steady-state operating conditions, when the motor load is 0.5 N·m and the set speeds are 500 r/min and 1 000 r/min, the proposed active disturbance rejection sliding mode control (ADRSMC) results in smaller motor pulsation. Under variable speed conditions, when the load torque is 0.2 N·m, the starting time of the system using PI control and traditional sliding mode control is 0.7 s and 0.25 s, and the variable speed response time is 0.65 s and 0.28 s. The starting time of the system with the proposed ADRSMC is 0.07 s, and the variable speed response time is 0.1 s. When the load torque is 0.5 N·m, the starting time of the system using PI control and traditional sliding mode control is 0.95 s and 0.3 s, and the variable speed response time is 0.73 s and 0.5 s. The starting time of the system with the proposed ADRSMC is 0.12 s, and the variable speed response time is 0.13 s. The proposed method reduces motor speed fluctuations under stable operation. Under variable load conditions, when the set speed is 500 r/min, the time for the system to return to the original state with PI control and traditional sliding mode control is 0.38 s and 0.12 s. The response time of the system with the proposed ADRSMC is 0.03 s. When the set speed is 1 000 r/min, the time for the system to return to the original state using PI control and traditional sliding mode control is 0.43 s and 0.33 s. The system’s response time with the proposed ADRSMC is 0.08 s, indicating that the proposed ADRSMC can approach the original speed in a relatively short period. It can be concluded that the proposed control strategy can effectively reduce the torque ripple of the motor, improve the response time of the system, and enhance the stability of the speed.
|
Received: 08 August 2023
|
|
|
|
|
[1] Sun Xiaodong, Cao Junhao, Lei Gang, et al.Speed sensorless control for permanent magnet synchronous motors based on finite position set[J]. IEEE Transa- ctions on Industrial Electronics, 2020, 67(7): 6089-6100. [2] 李孟秋, 高天, 朱慧玉, 等. 基于转矩分配函数的开关磁阻电机预测转矩控制[J]. 电力系统及其自动化学报, 2021, 33(9): 123-129. Li Mengqiu, Gao Tian, Zhu Huiyu, et al.Predictive torque control of switched reluctance motor based on torque sharing function[J]. Proceedings of the CSU- EPSA, 2021, 33(9): 123-129. [3] 闫文举, 陈昊, 刘永强, 等. 一种用于电动汽车磁场解耦型双定子开关磁阻电机的新型功率变换器[J]. 电工技术学报, 2021, 36(24): 5081-5091. Yan Wenju, Chen Hao, Liu Yongqiang, et al.A novel power converter on magnetic field decoupling double stator switched reluctance machine for electric vehicles[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5081-5091. [4] 方成辉, 陈昊, Galina Demidova, 等. 开关磁阻电机无电流传感器控制方法[J]. 电工技术学报, 2023, 38(2): 365-374. Fang Chenghui, Chen Hao, Demidova G, et al.Current sensorless control method of switched reluctance motors[J]. Transactions of China Elec- trotechnical Society, 2023, 38(2): 365-374. [5] 卿龙, 王惠民, 葛兴来. 一种高效率开关磁阻电机转矩脉动抑制方法[J]. 电工技术学报, 2020, 35(9): 1912-1920. Qing Long, Wang Huimin, Ge Xinglai.A high efficiency torque ripple suppression method for switched reluctance motor[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1912-1920. [6] 丁文, 李可, 付海刚. 一种12/10极模块化定子混合励磁开关磁阻电机分析[J]. 电工技术学报, 2022, 37(8): 1948-1958. Ding Wen, Li Ke, Fu Haigang.Analysis of a 12/10-pole modular-stator hybrid-excited switched reluctance machine[J]. Transactions of China Electro- technical Society, 2022, 37(8): 1948-1958. [7] 孙玉坤, 袁野, 黄永红, 等. 磁悬浮开关磁阻电机及其关键技术发展综述[J]. 电工技术学报, 2015, 30(22): 1-8. Sun Yukun, Yuan Ye, Huang Yonghong, et al.Development of the bearingless switched reluctance motor and its key technologies[J]. Transactions of China Electrotechnical Society, 2015, 30(22): 1-8. [8] 许爱德, 任萍, 陈加贵, 等. 基于电感特殊位置点的开关磁阻电机转子位置检测及误差补偿[J]. 电工技术学报, 2020, 35(8): 1613-1623. Xu Aide, Ren Ping, Chen Jiagui, et al.Rotor position detection and error compensation of switched reluctance motor based on special inductance position[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1613-1623. [9] 左月飞, 刘闯, 张捷, 等. 永磁同步电动机转速伺服系统PI控制器的一种新设计方法[J]. 电工技术学报, 2016, 31(13): 180-188. Zuo Yuefei, Liu Chuang, Zhang Jie, et al.A novel design method of PI controller for permanent magnetic synchronous motor speed servo system[J]. Transactions of China Electrotechnical Society, 2016, 31(13): 180-188. [10] 王喜莲, 许振亮. 基于PI参数自适应的开关磁阻电机调速控制研究[J]. 中国电机工程学报, 2015, 35(16): 4215-4223. Wang Xilian, Xu Zhenliang.Speed regulation control of switched reluctance motors based on PI parameter self-adaptation[J]. Proceedings of the CSEE, 2015, 35(16): 4215-4223. [11] 黄仁志, 全相军, 吴在军, 等. 基于多重谐振控制器的参考值前馈自适应控制[J]. 电工技术学报, 2022, 37(16): 4212-4224. Huang Renzhi, Quan Xiangjun, Wu Zaijun, et al.A multiple resonant based on reference feedforward adaptive voltage control of three-phase inverter[J]. Transactions of China Electrotechnical Society, 2022, 37(16): 4212-4224. [12] Liu Huixian, Li Shihua.Speed control for PMSM servo system using predictive functional control and extended state observer[J]. IEEE Transactions on Industrial Electronics, 2012, 59(2): 1171-1183. [13] Sun Xiaodong, Feng Liyun, Diao Kaikai, et al.An improved direct instantaneous torque control based on adaptive terminal sliding mode for a segmented-rotor SRM[J]. IEEE Transactions on Industrial Electronics, 2021, 68(11): 10569-10579. [14] 魏惠芳, 王丽梅. 永磁直线同步电机自适应模糊神经网络时变滑模控制[J]. 电工技术学报, 2022, 37(4): 861-869. Wei Huifang, Wang Limei.Adaptive fuzzy neural network time-varying sliding mode control for permanent magnet linear synchronous motor[J]. Transactions of China Electrotechnical Society, 2022, 37(4): 861-869. [15] 王天鹤, 赵希梅, 金鸿雁. 基于递归径向基神经网络的永磁直线同步电机智能二阶滑模控制[J]. 电工技术学报, 2021, 36(6): 1229-1237. Wang Tianhe, Zhao Ximei, Jin Hongyan.Intelligent second-order sliding mode control based on recurrent radial basis function neural network for permanent magnet linear synchronous motor[J]. Transactions of China Electrotechnical Society, 2021, 36(6): 1229-1237. [16] Xu Bo, Zhang Lei, Ji Wei.Improved non-singular fast terminal sliding mode control with disturbance observer for PMSM drives[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2753-2762. [17] 付东学, 赵希梅. 永磁直线同步电机自适应非奇异快速终端滑模控制[J]. 电工技术学报, 2020, 35(4): 717-723. Fu Dongxue, Zhao Ximei.Adaptive nonsingular fast terminal sliding mode control for permanent magnet linear synchronous motor[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 717-723. [18] 方馨, 王丽梅, 张康. 基于扰动观测器的永磁直线电机高阶非奇异快速终端滑模控制[J]. 电工技术学报, 2023, 38(2): 409-421. Fang Xin, Wang Limei, Zhang Kang.High order nonsingular fast terminal sliding mode control of permanent magnet linear motor based on disturbance observer[J]. Transactions of China Electrotechnical Society, 2023, 38(2): 409-421. [19] 夏长亮, 李莉, 谷鑫, 等. 双永磁电机系统转速同步控制[J]. 电工技术学报, 2017, 32(23): 1-8. Xia Changliang, Li Li, Gu Xin, et al.Speed synchronization control of dual-PMSM system[J]. Transactions of China Electrotechnical Society, 2017, 32(23): 1-8. [20] 韩国强, 陆哲, 吴孟霖, 等. 基于改进滑模控制策略的开关磁阻电机直接瞬时转矩控制方法[J]. 电工技术学报, 2022, 37(22): 5740-5755. Han Guoqiang, Lu Zhe, Wu Menglin, et al.Direct instantaneous torque control method for switched reluctance motor based on an improved sliding mode control strategy[J]. Transactions of China Electro- technical Society, 2022, 37(22): 5740-5755. [21] Han Jingqing.From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906. [22] 贲彤, 聂恒, 陈龙, 等. 一种正弦补偿型转矩分配函数的SRM转矩脉动抑制策略[J]. 电机与控制学报, 2022, 26(8): 100-111. Ben Tong, Nie Heng, Chen Long, et al.SRM torque ripple suppression strategy based on sinusoidal compensation torque sharing function[J]. Electric Machines and Control, 2022, 26(8): 100-111. [23] Xia Zekun, Fang Gaoliang, Xiao Dianxun, et al.An online torque sharing function method involving current dynamics for switched reluctance motor drives[J]. IEEE Transactions on Transportation Elec- trification, 2023, 9(1): 534-548. [24] Qu Lizhi, Qiao Wei, Qu Liyan.Active-disturbance- rejection-based sliding-mode current control for permanent-magnet synchronous motors[J]. IEEE Transa- ctions on Power Electronics, 2021, 36(1): 751-760. |
|
|
|