|
|
Current Deadbeat Control of Permanent Magnet-Assisted Synchronous Reluctance Motor Based on Parameter Identification |
Xu Aide1, Liu Xin2, Li Xinyu2, Hu Shimai1 |
1. School of Information and Science Technology Dalian Maritime University Dalian 116026 China; 2. School of Electrical Engineering of Ships Dalian Maritime University Dalian 116026 China |
|
|
Abstract The permanent magnet-assisted synchronous reluctance motor, which combines the characteristics of permanent magnet synchronous motor and synchronous reluctance motor, has received more and more attention from many scholars because of its characteristics of less permanent magnet usage, high efficiency and high torque density. Deadbeat predictive control is widely used in modern motor control schemes. However, the control effect of deadbeat predictive control depends on the accuracy of the model, and in the actual operation of PMA-SynRM characterized by a high convex pole ratio, the motor parameters will be changed greatly with the change of operating conditions, which is more obvious in the motor inductance parameters. When the motor inductance parameter varies greatly, it leads to a decrease in the calculation accuracy of the current angle of the maximum torque per ampere controller and a decrease in the control effect of the deadbeat controller. Therefore, a parametric online identification method for the d and q axis inductance parameters of permanent magnet assisted synchronous reluctance motors is adopted in this paper. In order to improve the control effect of deadbeat predictive current control system, the identification value is used to replace the initial model inductance parameters in MTPA controller and deadbeat predictive current controller. First, this paper defines the position of the d and q axis in the rotor structure and derives a mathematical model of a permanent magnet-assisted synchronous reluctance motor. Secondly, according to the voltage equation of permanent magnet-assisted synchronous reluctance motor, the mathematical equation of traditional deadbeat predictive current control is deduced, and the parameter sensitivity of inductance parameters in traditional deadbeat predictive current control scheme is analyzed. According to the stability condition of closed-loop transfer function in discrete domain, the fluctuation range of d and q axis inductance which can keep the deadbeat predictive current controller stable is given. The controller is in an unstable state when the d and q axis inductance is greater than two times the nominal model inductance. Finally, the parameter adaptive rate of the model reference adaptive motor parameter identification system is designed according to Popov's super stability theory, and the inductance parameter online identification scheme of PMA-SynRM is given to complete the design of the variable parameter MTPA-DBPCC controller. In order to verify the effectiveness of the deadbeat predictive current control strategy based on parameter identification, the algorithm is simulated and verified in Matlab/Simulink environment, and the experiment is carried out on the experimental platform with TMS320F28335 controller as the core. The simulation and experimental results show that the deadbeat predictive current control scheme based on parameter identification can effectively suppress the system oscillation and current ripple caused by inductance parameter mismatch. When the d axis inductance is greater than two times the parameter mismatch, the peak values of d and q axis current fluctuations are reduced by about 142% and 55%, respectively; when the q axis inductance is greater than two times the parameter mismatch, the peak values of d and q axis current fluctuations are reduced by about 7.6% and 147%, respectively, thus the robustness of the system is improved.
|
Received: 25 July 2023
|
|
|
|
|
[1] Dieterle O, Greiner T, Heidrich P.Control of a PMSM with quadruple three-phase star-connected windings under inverter short-circuit fault[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 685-695. [2] Jia Shaofeng, Zhang Ping, Liang Deliang, et al.Design and comparison of three different types of IE4 efficiency machines[C]//2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 2019: 1-4. [3] 曹恒佩, 艾萌萌, 王延波. 永磁辅助同步磁阻电机研究现状及发展趋势[J]. 电工技术学报, 2022, 37(18): 4575-4592. Cao Hengpei, Ai Mengmeng, Wang Yanbo.Research status and development trend of permanent magnet assisted synchronous reluctance motor[J]. Transa- ctions of China Electrotechnical Society, 2022, 37(18): 4575-4592. [4] 黄辉, 胡余生. 永磁辅助同步磁阻电机设计与应用[M]. 北京: 机械工业出版社, 2017. [5] Niazi P, Toliyat H A, Goodarzi A.Robust maximum torque per ampere (MTPA) control of PM-assisted SynRM for traction applications[J]. IEEE Transa- ctions on Vehicular Technology, 2007, 56(4): 1538-1545. [6] 狄冲, 鲍晓华, 潘晋, 等. 基于Elmer开源有限元平台的铁氧体辅助同步磁阻电机的建模和分析[J]. 电工技术学报, 2022, 37(5): 1136-1144. Di Chong, Bao Xiaohua, Pan Jin, et al.Modelling and analysis of a ferrite assisted synchronous reluctance machine based on the open-source platform Elmer[J]. Transactions of China Electrotechnical Society, 2022, 37(5): 1136-1144. [7] 杨晨, 白保东, 陈德志, 等. 可变磁通永磁辅助同步磁阻电机设计与性能分析[J]. 电工技术学报, 2019, 34(3): 489-496. Yang Chen, Bai Baodong, Chen Dezhi, et al.Design and analysis of a variable flux permanent magnet assisted synchronous motor[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 489-496. [8] Li Changbin, Wang Xiuhe, Liu Feng, et al.Analysis of permanent magnet-assisted synchronous reluctance motor based on equivalent reluctance network model[J]. CES Transactions on Electrical Machines and Systems, 2022, 6(2): 135-144. [9] 孙毅, 蔡顺, 林迎前, 等. 永磁辅助同步磁阻电机顶层优化设计[J]. 电工技术学报, 2022, 37(9): 2306-2318. Sun Yi, Cai Shun, Lin Yingqian, et al.Top-level design pattern of PM-assisted synchronous reluctance machines[J]. Transactions of China Electrotechnical Society, 2022, 37(9): 2306-2318. [10] 解正宵. 永磁辅助同步磁阻电机控制策略研究[D].杭州:浙江大学, 2021. Xie Zhengxiao.Research on control strategies of permanent magnet-assisted synchronous reluctance motor[D]. Hangzhou: Zhejiang University, 2021. [11] 方磊, 谭国俊, 刘娜, 等. 永磁辅助式同步磁阻电机转矩预测控制方法[J]. 电机与控制应用, 2018, 45(5): 1-7. Fang Lei, Tan Guojun, Liu Na, et al.Torque predictive control method for permanent magnet assisted synchronous reluctance motor[J]. Electric Machines & Control Application, 2018, 45(5): 1-7. [12] Huynh T A, Le N D, Hsieh M F, et al.A modified of DTC control applied to novel FI-PMA-SynRM for torque ripple reduction[C]//2019 IEEE 4th International Future Energy Electronics Conference (IFEEC), Singapore, 2019: 1-7. [13] Arafat A, Haque M S, Islam M Z, et al.Performance comparison at maximum torque per ampere control between rare earth and rare earth free five-phase PMa-SynRM under open phase faults[C]//2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 2018: 784-789. [14] 翁子恺, 储剑波. 基于定子磁场定向的永磁辅助同步磁阻电机无差拍直接转矩控制[J]. 电机与控制应用, 2022, 49(5): 20-26. Weng Zikai, Chu Jianbo.Deadbeat direct torque control of PMASynRM based on stator field orientation[J]. Electric Machines & Control Appli- cation, 2022, 49(5): 20-26. [15] 谷鑫, 鲁金月, 王志强, 等. 基于无差拍电流预测控制的永磁同步电机谐波电流抑制策略[J]. 电工技术学报, 2022, 37(24): 6345-6356. Gu Xin, Lu Jinyue, Wang Zhiqiang, et al.Harmonic current suppression strategy for permanent magnet synchronous motor based on deadbeat current predi- ction control[J]. Transactions of China Electrotech- nical Society, 2022, 37(24): 6345-6356. [16] Ba Xin, Wang Peng, Zhang Chengning, et al.Improved deadbeat predictive current control to enhance the performance of the drive system of permanent magnet synchronous motors[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(8): 0603004. [17] 邱建琪, 曾汉, 史涔溦. 永磁辅助式同步磁阻电机自寻优控制及参数辨识[J]. 电机与控制学报, 2022, 26(6): 1-8. Qiu Jianqi, Zeng Han, Shi Cenwei.Self-optimizing control and parameters identification for permanent magnet assisted synchronous reluctance motor[J]. Electric Machines and Control, 2022, 26(6): 1-8. [18] An Xingke, Liu Guohai, Chen Qian, et al.Adjustable model predictive control for IPMSM drives based on online stator inductance identification[J]. IEEE Transactions on Industrial Electronics, 2022, 69(4): 3368-3381. [19] Wang Zitan, Chai Jianyun, Xiang Xuewei, et al.A novel online parameter identification algorithm designed for deadbeat current control of the permanent-magnet synchronous motor[J]. IEEE Transactions on Industry Applications, 2022, 58(2): 2029-2041. [20] Yao Yu, Huang Yunkai, Peng Fei, et al.An improved deadbeat predictive current control with online parameter identification for surface-mounted PMSMs[J]. IEEE Transactions on Industrial Electronics, 2020, 67(12): 10145-10155. [21] 李婕, 杨淑英, 谢震, 等. 基于有效信息迭代快速粒子群优化算法的永磁同步电机参数在线辨识[J]. 电工技术学报, 2022, 37(18): 4604-4613. Li Jie, Yang Shuying, Xie Zhen, et al.Online parameter identification of permanent magnet synchronous motor based on fast particle swarm optimization algorithm with effective information iterated[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4604-4613. [22] Ma Xiaojun, Bi Chao.A technology for online parameter identification of permanent magnet syn- chronous motor[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(3): 237-242. |
|
|
|