[1] 本报评论员. 把握好“十四五”碳达峰关键期窗口期[N]. 延安日报, 2021-03-23.
[2] 谢小荣, 马宁嘉, 刘威, 等. 新型电力系统中储能应用功能的综述与展望[J]. 中国电机工程学报, 2023, 43(1): 13, 158-168.
Xie Xiaorong, Ma Ningjia, Liu Wei, et al. Functions of energy storage in renewable energy dominated power systems: review and prospect[J]. Proceedings of the CSEE, 2023, 43(1): 13, 158-168.
[3] Olabi A G, Onumaegbu C, Wilberforce T, et al.Critical review of energy storage systems[J]. Energy, 2021, 214: 118987.
[4] 张谦, 邓小松, 岳焕展, 等. 计及电池寿命损耗的电动汽车参与能量-调频市场协同优化策略[J]. 电工技术学报, 2022, 37(1): 72-81.
Zhang Qian, Deng Xiaosong, Yue Huanzhan, et al.Coordinated optimization strategy of electric vehicle cluster participating in energy and frequency regulation markets considering battery lifetime degradation[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 72-81.
[5] Chen Rusong, Nolan A M, Lu Jiaze, et al.The thermal stability of lithium solid electrolytes with metallic lithium[J]. Joule, 2020, 4(4): 812-821.
[6] 黄德扬, 陈自强, 周诗尧, 等. 极寒环境下动力锂离子电池特性[J]. 上海交通大学学报, 2019, 53(9): 1051-1057.
Huang Deyang, Chen Ziqiang, Zhou Shiyao, et al.Characteristics of power lithium-ion batteries at extreme cold environment[J]. Journal of Shanghai Jiao Tong University, 2019, 53(9): 1051-1057.
[7] Li Yang, Bai Minli, Zhou Zhifu, et al.Experimental investigations of liquid immersion cooling for 18650 lithium-ion battery pack under fast charging conditions[J]. Applied Thermal Engineering, 2023, 227: 120287.
[8] 李懿洋. 锂离子电池低温充放电循环与高温浮充下的失效机理研究[D]. 北京: 清华大学, 2017.
Li Yiyang.The aging mechanism of lithium-ion batteries during low temperature cycling and high temperature float charge[D]. Beijing: Tsinghua University, 2017.
[9] Liu Jiexun, Gao Dawei, Cao Jianhua.Study on the effects of temperature on LiFePO4 battery life[C]//2012 IEEE Vehicle Power and Propulsion Conference, Seoul, Korea (South), 2013: 1436-1440.
[10] 孙金磊, 朱春波, 李磊, 等. 电动汽车动力电池温度在线估计方法[J]. 电工技术学报, 2017, 32(7): 197-203.
Sun Jinlei, Zhu Chunbo, Li Lei, et al.Online temperature estimation method for electric vehicle power battery[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 197-203.
[11] 刘素贞, 陈晶晶, 张闯, 等. 基于区域电压的锂离子电池不均匀发热模型[J]. 电工技术学报, 2022, 37(21): 5627-5636.
Liu Suzhen, Chen Jingjing, Zhang Chuang, et al.Regional voltage-based uneven heating model of lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5627-5636.
[12] 陈英杰, 杨耕, 祖海鹏, 等. 基于恒流实验的锂离子电池开路电压与内阻估计方法[J]. 电工技术学报, 2018, 33(17): 3976-3988.
Chen Yingjie, Yang Geng, Zu Haipeng, et al.An open circuit voltage and internal resistance estimation method of lithium-ion batteries with constant current tests[J]. Transactions of China Electrotechnical Society, 2018, 33(17): 3976-3988.
[13] 姜余, 陈自强. 可变环境温度下锂离子电池平均温度估计[J]. 上海交通大学学报, 2021, 55(7): 781-790.
Jiang Yu, Chen Ziqiang.Average temperature estimation for lithium-ion batteries at variable environment temperature[J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 781-790.
[14] 孙丙香, 宋东林, 阮海军, 等. 基于自产热和外传热的锂离子电池热学模型参数辨识方法[J]. 电工技术学报, 2024, 39(1): 278-288.
Sun Bingxiang, Song Donglin, Ruan Haijun, et al.Parameter identification method of thermal model of lithium-ion battery based on self-generated heat and external heat transfer[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 278-288.
[15] Ng B, Coman P T, Mustain W E, et al.Non-destructive parameter extraction for a reduced order lumped electrochemical-thermal model for simulating Li-ion full-cells[J]. Journal of Power Sources, 2020, 445: 227296.
[16] Li Shi, Pischinger S, He Chaoyi, et al.A comparative study of model-based capacity estimation algorithms in dual estimation frameworks for lithium-ion batteries under an accelerated aging test[J]. Applied Energy, 2018, 212: 1522-1536.
[17] 李建林, 李雅欣, 刘海涛, 等. 计及储能电站安全性的功率分配策略研究[J]. 电工技术学报, 2022, 37(23): 5976-5986.
Li Jianlin, Li Yaxin, Liu Haitao, et al.Research on power distribution strategy considering the safety of energy storage power station[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 5976-5986.
[18] 李中浩, 余娟, 杨知方, 等. 精准计及大规模储能电池寿命的电力系统经济调度[J]. 中国电机工程学报, 2023, 43(19): 7371-7383.
Li Zhonghao, Yu Juan, Yang Zhifang, et al.Economic dispatch of power system accurately considering the life of large-scale energy storage battery[J]. Proceedings of the CSEE, 2023, 43(19): 7371-7383.
[19] Liu Chunyang, Ma Houzhen, Zhang Hengxu, et al.A MILP-based battery degradation model for economic scheduling of power system[J]. IEEE Transactions on Sustainable Energy, 2023, 14(2): 1000-1009.
[20] 柴炜, 李征, 蔡旭, 等. 基于使用寿命模型的大容量电池储能系统变步长优化控制方法[J]. 电工技术学报, 2016, 31(14): 58-66.
Chai Wei, Li Zheng, Cai Xu, et al.Variable step-size control method of large capacity battery energy storage system based on the life model[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 58-66.
[21] 杨艳红, 裴玮, 邓卫, 等. 计及蓄电池储能寿命影响的微电网日前调度优化[J]. 电工技术学报, 2015, 30(22): 172-180.
Yang Yanhong, Pei Wei, Deng Wei, et al.Day-ahead scheduling optimization for microgrid with battery life model[J]. Transactions of China Electrotechnical Society, 2015, 30(22): 172-180.
[22] 傅晓梅, 温步瀛, 唐雨晨. 考虑电池储能运行特性的微网优化运行[J]. 电气技术, 2021, 22(4): 12-19.
Fu Xiaomei, Wen Buying, Tang Yuchen.Optimal operation of microgrid considering operation characteristics of battery energy storage[J]. Electrical Engineering, 2021, 22(4): 12-19.
[23] Liu Xiang, Ren Dongsheng, Hsu H, et al.Thermal runaway of lithium-ion batteries without internal short circuit[J]. Joule, 2018, 2(10): 2047-2064.
[24] 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016.
Feng Xuning.Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: test, modeling and prevention[D]. Beijing: Tsinghua University, 2016.
[25] 蔡敏怡, 张娥, 林靖, 等. 串联锂离子电池组均衡拓扑综述[J]. 中国电机工程学报, 2021, 41(15): 5294-5311.
Cai Minyi, Zhang E, Lin Jing, et al.Review on balancing topology of lithium-ion battery pack[J]. Proceedings of the CSEE, 2021, 41(15): 5294-5311.
[26] Xu Bolun, Oudalov A, Ulbig A, et al.Modeling of lithium-ion battery degradation for cell life assessment[J]. IEEE Transactions on Smart Grid, 2018, 9(2): 1131-1140.
[27] Shi Yuanyuan, Xu Bolun, Wang Di, et al.Using battery storage for peak shaving and frequency regulation: joint optimization for superlinear gains[C]// 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA, 2018: 1.
[28] 熊焰, 吴杰康, 王强, 等. 风光气储互补发电的冷热电联供优化协调模型及求解方法[J]. 中国电机工程学报, 2015, 35(14): 3616-3625.
Xiong Yan, Wu Jiekang, Wang Qiang, et al.An optimization coordination model and solution for combined cooling, heating and electric power systems with complimentary generation of wind, PV, gas and energy storage[J]. Proceedings of the CSEE, 2015, 35(14): 3616-3625. |