|
|
Enhanced Identification Approach for RC Parameters of Si/SiC Hybrid Switches Based on Thermal Network Partition Scheme |
Long Liu, Xiao Fan, Tu Chunming, Xiao Biao, Guo Qi |
National Electric Power Conversion and Control Engineering Technology Research Center Hunan University Changsha 410082 China |
|
|
Abstract The hybrid switch with paralleled Si IGBT and SiC MOSFET can break the limitations of single Si-based and SiC-based devices and effectively balance loss and cost. Junction temperature estimation is crucial for the reliable operation of Si/SiC hybrid switches. However, research on thermal monitoring often needs to meet two major conditions: thermal steady-state balance and measurable power loss. This paper proposes a coupling thermal parameter identification method for hybrid switches utilizing the thermal network partition equivalence concept. The accurate identification of the coupled thermal network parameters can be realized by only three case temperature cooling curves. Firstly, the thermal structure characteristics of Si/SiC hybrid switches are analyzed, and the challenge of high-order thermal constraints when the zero-input response method is directly applied to a hybrid switch is elaborated. Secondly, the thermal network partition of Si IGBT and SiC MOSFET is carried out to reduce the order of the model. According to Kirchhoff's law and node voltage equation, the Laplace expressions of Si IGBT and SiC MOSFET case temperatures are obtained. Thirdly, based on the mathematical relationship between the root and the coefficient, the constraint equations between the time constant of the case temperature cooling curve and the thermal parameters are constructed. By simultaneously solving the equations under the thermal network partition equivalence, all the remaining thermal parameters can be identified. Finally, the hybrid switch's coupling thermal parameter identification process is designed. In this process, the experimental steps of thermal time constant extraction are simple, greatly reducing the difficulty of solving the thermal constraint equations. Based on the experimental platform, the time constants of the cooling curves under two heat dissipation conditions are fitted, and all RC parameters can be solved by substituting the fitted time constants into the thermal constraint equations. Compared with the junction-to-case thermal resistance value tested by the IEC standard, the identification error of Si IGBT and SiC MOSFET in the proposed method is within 2%. In the transient junction temperature experiment, the experimental waveform is consistent with the junction temperature estimation waveform of the proposed method. The estimated and the measured junction temperatures are in good agreement on various time scales. The accuracy of the identified coupled thermal parameters relying on the thermal network partition equivalence is proved. The following conclusions can be drawn: (1) By heating a single chip to partition the coupled thermal network, the high-order thermal network is divided into two low-order equivalent thermal network models. The difficulty of thermal parameter identification with the zero-input response method is reduced. (2) The proposed method simplifies the power loss measurement steps and thermal equilibrium conditions. It has the advantages of simplicity, universality, and high process ability in coupled thermal parameter identification of parallel devices. (3) The idea of thermal network partition equivalence can be further extended to the parallel structure of three or more devices, which greatly improves the applicability of the zero-input response method in complex scenarios.
|
Received: 19 April 2023
|
|
|
|
|
[1] 宁圃奇, 李磊, 曹瀚, 等. 基于Si IGBT/SiC MOSFET的混合开关器件综述[J]. 电工电能新技术, 2018, 37(10): 1-9. Ning Puqi, Li Lei, Cao Han, et al.Summary of Si IGBT/SiC MOSFET based hybrid switching device[J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37(10): 1-9. [2] 李锦, 党恩帅, 范雨顺, 等. 一种碳化硅与硅器件混合型三电平有源中点钳位零电压转换软开关变流器[J]. 电工技术学报, 2024, 39(8): 2485-2495. Li Jin, Dang Enshuai, Fan Yushun, et al.A hybrid three-level active-neutral-point-clamped zero-voltage transition soft-switching converter with silicon car- bide and silicon devices[J]. Transactions of China Electrotechnical Society, 2024, 39(8): 2485-2495. [3] Woldegiorgis D, Hossain M M, Saadatizadeh Z, et al.Hybrid Si/SiC switches: a review of control objectives, gate driving approaches and packaging solutions[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(2): 1737-1753. [4] 任鹏, 涂春鸣, 侯玉超, 等. 基于Si和SiC器件的混合型级联多电平变换器及其调控优化方法[J]. 电工技术学报, 2023, 38(18): 5017-5028. Ren Peng, Tu Chunming, Hou Yuchao, et al.Research on a hybrid cascaded multilevel converter based on Si and SiC device and its control optimization method[J]. Transactions of China Electrotechnical Society, 2023, 38(18): 5017-5028. [5] Li Zongjian, Zhang Chao, Yu Jiajun, et al.Dynamic gate delay time control of Si/SiC hybrid switch for loss minimization in voltage source inverter[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10(4): 4160-4170. [6] Peng Zishun, Wang Jun, Liu Zeng, et al.Adaptive gate delay-time control of Si/SiC hybrid switch for efficiency improvement in inverters[J]. IEEE Transa- ctions on Power Electronics, 2021, 36(3): 3437-3449. [7] Peng Zishun, Wang Jun, Liu Zeng, et al.Fault- tolerant inverter operation based on Si/SiC hybrid switches[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 545-556. [8] Peng Zishun, Wang Jun, Liu Zeng, et al.A variable- frequency current-dependent switching strategy to improve tradeoff between efficiency and SiC MOSFET overcurrent stress in Si/SiC-hybrid-switch- based inverters[J]. IEEE Transactions on Power Electronics, 2021, 36(4): 4877-4886. [9] Li Zongjian, Wang Jun, Deng Linfeng, et al.Active gate delay time control of Si/SiC hybrid switch for junction temperature balance over a wide power range[J]. IEEE Transactions on Power Electronics, 2020, 35(5): 5354-5365. [10] Stecca M, Tan Changyu, Xu Junzhong, et al.Hybrid Si/SiC switch modulation with minimum SiC MOSFET conduction in grid connected voltage source converters[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10(4): 4275-4289. [11] 魏云海, 陈民铀, 赖伟, 等. 基于IGBT结温波动平滑控制的主动热管理方法综述[J]. 电工技术学报, 2022, 37(6): 1415-1430. Wei Yunhai, Chen Minyou, Lai Wei, et al.Review on active thermal control methods based on junction temperature swing smooth control of IGBTs[J]. Transactions of China Electrotechnical Society, 2022, 37(6): 1415-1430. [12] 丁红旗, 马伏军, 徐千鸣, 等. 模块化多电平换流器子模块IGBT损耗优化控制策略[J]. 电力系统自动化, 2021, 45(17): 143-152. Ding Hongqi, Ma Fujun, Xu Qianming, et al.Loss optimization control strategy for IGBT in sub-module of modular multilevel converter[J]. Automation of Electric Power Systems, 2021, 45(17): 143-152. [13] 郑丹, 宁圃奇, 仇志杰, 等. 基于老化补偿的功率模块全生命周期在线结温监测方法[J/OL]. 电工技术学报, 2023: 1-14. https://doi.org/10.19595/j.cnki. 1000-6753.tces.230589. Zheng Dan, Ning Puqi, Chou Zhijie, et al. Full life-cycle online junction temperature monitoring of power module based on aging compensation[J]. Transactions of China Electrotechnical Society, 2023: 1-14. https://doi.org/10.19595/j.cnki.1000-6753.tces. 230589. [14] 杨舒萌, 孙鹏菊, 王凯宏, 等. 恒流驱动下基于VeE_max的IGBT模块解耦老化影响的结温测量方法[J]. 电工技术学报, 2022, 37(12): 3038-3047, 3072. Yang Shumeng, Sun Pengju, Wang Kaihong, et al.Junction temperature measurement method of IGBT modules based on VeE_max under constant-current source drive which decouples fatigue effect[J]. Transactions of China Electrotechnical Society, 2022, 37(12): 3038-3047, 3072. [15] 姜鑫, 应展烽, 万萌, 等. 计及环境对流随机性的功率器件结-环境热网络模型[J]. 电工技术学报, 2021, 36(14): 3090-3100. Jiang Xin, Ying Zhanfeng, Wan Meng, et al.Junction- to-ambient thermal network model of power devices considering randomness of thermal convective environment[J]. Transactions of China Electrotech- nical Society, 2021, 36(14): 3090-3100. [16] 刘平, 李海鹏, 苗轶如, 等. 基于内置温度传感器的碳化硅功率模块结温在线提取方法[J]. 电工技术学报, 2021, 36(12): 2522-2534. Liu Ping, Li Haipeng, Miao Yiru, et al.Online junction temperature extraction for SiC module based on built-in temperature sensor[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2522-2534. [17] Yang Xin, Heng Ke, Dai Xingyu, et al.A temperature-dependent cauer model simulation of IGBT module with analytical thermal impedance characterization[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10(3): 3055-3065. [18] 陈宇, 吴强, 周宇, 等. 基于傅里叶级数解析热扩散角的功率模块热阻抗物理模型[J]. 中国电机工程学报, 2022, 42(2): 715-728. Chen Yu, Wu Qiang, Zhou Yu, et al.Physics-based thermal impedance model for power module by analytic Fourier series based heat spreading angle[J]. Proceedings of the CSEE, 2022, 42(2): 715-728. [19] 何怡刚, 张钟韬, 刘嘉诚, 等. 一种考虑热扩散和热耦合的IGBT模块热阻抗模型[J]. 电工电能新技术, 2020, 39(5): 17-24. He Yigang, Zhang Zhongtao, Liu Jiacheng, et al.Thermal impedance model for IGBT modules considering heat spreading and thermal coupling[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39(5): 17-24. [20] Li Jianfeng, Castellazzi A, Eleffendi M A, et al.A physical RC network model for electrothermal analysis of a multichip SiC power module[J]. IEEE Transactions on Power Electronics, 2018, 33(3): 2494-2508. [21] 许智亮, 葛兴来, 李金, 等. 计及流-热耦合热网络模型的IGBT结温计算[J]. 电气工程学报, 2022, 17(2): 19-26. Xu Zhiliang, Ge Xinglai, Li Jin, et al.Calculation of IGBT junction temperature with thermal network model considering flow-thermal coupling[J]. Journal of Electrical Engineering, 2022, 17(2): 19-26. [22] Gao Shan, Ngo K D T, Lu Guoquan. Two- dimensional mapping of interface thermal resistance by transient thermal measurement[J]. IEEE Transa- ctions on Industrial Electronics, 2021, 68(5): 4448-4456. [23] Cai Jie, Zhou Luowei, Sun Pengju, et al.Effect of TIM deterioration on monitoring of IGBT module thermal resistance and its compensation strategy[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12(5): 789-797. [24] Wei Kaixin, Lu D D C, Zhang Chengning, et al. Modeling and analysis of thermal resistances and thermal coupling between power devices[J]. IEEE Transactions on Electron Devices, 2019, 66(10): 4302-4308. [25] Xu Mengqi, Ma Ke, Cai Xu, et al.Lumped thermal coupling model of multichip power module enabling case temperature as reference node[J]. IEEE Transa- ctions on Power Electronics, 2022, 37(10): 11502-11506. [26] 郑帅, 杜雄, 张军, 等. 采用降温曲线的SiC MOSFET模块热参数的测量[J]. 中国电机工程学报, 2020, 40(6): 1759-1769. Zheng Shuai, Du Xiong, Zhang Jun, et al.Measurement of thermal parameters of SiC MOSFET modules with cooling curves[J]. Proceedings of the CSEE, 2020, 40(6): 1759-1769. [27] IEC. Semiconductor devices-discrete devices-part 9: insulated-gate bipolar transistors (IGBTs): IEC 60747-9-2007[S]. Switzerland: IEC, 2007. [28] 余瑶怡, 杜雄, 张军. 基于热时间常数的IGBT模块热疲劳老化监测方法[J]. 电源学报, 2020, 18(1): 18-27. Yu Yaoyi, Du Xiong, Zhang Jun.Thermal fatigue monitoring method for IGBT module based on thermal time constants[J]. Journal of Power Supply, 2020, 18(1): 18-27. [29] Zhang Jun, Du Xiong, Yu Yaoyi, et al.Thermal parameter monitoring of IGBT module using junction temperature cooling curves[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 8148-8160. [30] Zhang Jun, Du Xiong, Wu Yu, et al.Thermal parameter monitoring of IGBT module using case temperature[J]. IEEE Transactions on Power Elec- tronics, 2019, 34(8): 7942-7956. [31] Zheng Shuai, Du Xiong, Zhang Jun, et al.Measure- ment of thermal parameters of SiC MOSFET module by case temperature[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 311-322. [32] 杜雄, 李腾飞, 夏俊, 等. 基于零输入响应的Cauer型RC网络参数辨识方法[J]. 电工技术学报, 2017, 32(1): 222-230. Du Xiong, Li Tengfei, Xia Jun, et al.Identification method for Cauer type RC network parameter based on the zero-input response[J]. Transactions of China Electrotechnical Society, 2017, 32(1): 222-230. |
|
|
|