|
|
Vibration Noise Analysis and Tip Noise Optimization of Unmanned Aerial Vehicle 17 kW Motor at Cruise Speed |
Liu Dongliang1,2, Zhan Chenggen1, Qu Feng1,2, Chen Lijun1, Shi Heng1 |
1. School of Artificial Intelligence Hangzhou Dianzi University Hangzhou 310018 China; 2. Wolong Electric Group Co. Ltd Shangyu 312300 China |
|
|
Abstract In unmanned aerial vehicle (UAV) noise fields, extensive research on propeller noise generation mechanisms and suppression methods has achieved remarkable results. The noise radiated by UAV motors has become a new research focus. The study addresses a 17 kW UAV with a surface-mounted external rotor permanent magnet synchronous motor. The existing methods reduce the motor output torque but increase manufacturing complexity. Therefore, the paper proposes an optimization method for pole and stator slotting parameters to improve the motor vibration noise without reducing the output torque. Since radial air-gap flux density and radial electromagnetic force cause motor vibration noises, the space harmonic characteristics of the radial air-gap flux density are analyzed according to the effects of the magnetic pole and stator slotting parameters on the amplitude of low-order radial air-gap flux density. Rotor modal simulation is carried out to investigate the mechanism of the radial electromagnetic force and the motor space modes. Then, the characteristics of electromagnetic vibration noises at multiple speeds are analyzed, focusing on the vibration noise at a cruising speed of 1 880 r/min. A multi-objective optimization mathematical model is established using a hybrid particle swarm optimization algorithm, taking the average torque, torque pulsation, and flux density fundamental wave amplitude as the constraints. After comparing three alternatives, Scheme 1 is selected as the optimization scheme. The simulation shows that the amplitude of the 3rd and 5th-order components of the radial air gap magnetization is decreased by 45.57% and 60.92% compared with the original scheme. The magnitude of the radial electromagnetic force decreases by 5.88% in the fundamental component, 33.03% in the 2nd component, and 6.81% in the 4th component. The torque fluctuation of Scheme 1 decreases by 32% when the average torque is almost unchanged. Experimental results show that after structure optimization, the electromagnetic vibration tip noise at the cruising speed is reduced by 6.36 dB from the initial 71.61 dB to 65.25 dB, and the overall performance of the motor vibration noise is improved at multiple speeds. The optimized structure significantly suppresses the UAV motor tip vibration noise at the cruising speed. In addition, the average torque is 87.44 N·m for the original scheme and 87.56 N·m for the optimized scheme, and the average torque is almost constant. The torque pulsation is 3.30%, and the torque fluctuation of the optimized scheme is 2.16%. The overall decrease in torque fluctuation is 34.5%. The optimized structure reduces the tip noise of the motor and optimizes the torque pulsation.
|
Received: 31 July 2023
|
|
|
|
|
[1] 王科雷, 周洲, 马悦文, 等. 垂直起降固定翼无人机技术发展及趋势分析[J]. 航空工程进展, 2022, 13(5): 1-13. Wang Kelei, Zhou Zhou, Ma Yuewen, et al.Development and trend analysis of vertical takeoff and landing fixed wing UAV[J]. Advances in Aeronautical Science and Engineering, 2022, 13(5): 1-13. [2] 陈鹏, 陈洋, 王威. 无人机声学定位技术综述[J]. 华南理工大学学报(自然科学版), 2022, 50(12): 109-123. Chen Peng, Chen Yang, Wang Wei.Review for UAV acoustic positioning[J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50(12): 109-123. [3] 潘嘉琦, 曹科才, 丁嘉存, 等. 基于维纳滤波的无人机语音系统的设计与实现[J]. 计算机与数字工程, 2021, 49(10): 2161-2167. Pan Jiaqi, Cao Kecai, Ding Jiacun, et al.Design and implementation of UAV phonetic system based on Wiener filtering[J]. Computer & Digital Engineering, 2021, 49(10): 2161-2167. [4] Xu He, Kong Deyi, Qian Yujie, et al.Motor noise reduction of unmanned aerial vehicles[J]. Applied Acoustics, 2022, 198: 108979. [5] 臧渊, 齐亨通, 周洁. 多旋翼无人机电机减振加固结构设计[J]. 科技创新与应用, 2022, 12(31): 89-92, 98. Zang Yuan, Qi Hengtong, Zhou Jie.Structural design of motor vibration reduction and reinforcement for multi-rotor UAV[J]. Technology Innovation and Application, 2022, 12(31): 89-92, 98. [6] 刘慧娟, 卜斌彬, 郭跃. 削弱表贴式永磁电机2p阶径向电磁力波幅值的磁极设计方法[J]. 微特电机, 2023, 51(4): 8-14. Liu Huijuan, Bu Binbin, Guo Yue.A magnetic pole optimization method to suppress the amplitude of 2p-order radial electromagnetic force of surface mount permanent magnet motor[J]. Small & Special Electrical Machines, 2023, 51(4): 8-14. [7] 李泽星, 夏加宽, 刘铁法, 等. 基于极间虚齿的表贴式永磁电机六倍频振动噪声的削弱[J]. 电工技术学报, 2023, 38(5): 1287-1298. Li Zexing, Xia Jiakuan, Liu Tiefa, et al.Reduction of six times frequency vibration and noise of surface- mounted permanent magnet synchronous machines with interpolar virtual teeth[J]. Transactions of China Electrotechnical Society, 2023, 38(5): 1287-1298. [8] 乔鸣忠, 卢希浩, 张弛. 气隙磁密3次谐波对电机振动噪声的影响[J]. 国防科技大学学报, 2023, 45(3): 92-98. Qiao Mingzhong, Lu Xihao, Zhang Chi.Influence of third order harmonic of air gap flux density on motor vibration and noise[J]. Journal of National University of Defense Technology, 2023, 45(3): 92-98. [9] 吕长朋, 李明勇, 陈辉. 永磁电机零阶径向力引起的齿槽频次振动[J]. 中国电机工程学报, 2021, 41(19): 6778-6787. Lü Changpeng, Li Mingyong, Chen Hui.Cogging frequency vibration of permanent magnet motor caused by zeroth-order radial magnetic forces[J]. Proceedings of the CSEE, 2021, 41(19): 6778-6787. [10] Das S, Chowdhury A, Wan Zhao, et al.Sensitivity analysis based NVH performance evaluation in permanent magnet synchronous machines using lumped unit force response[C]//2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 2020: 802-807. [11] Bang T K, Shin K H, Lee Y G, et al.Comparative study of NVH of permanent magnet machines according to rotor eccentricity with fractional pole/slot combinations[J]. IEEE Transactions on Applied Superconductivity, 2022, 32(6): 1-7. [12] 李泽星, 夏加宽, 刘铁法, 等. 基于分段交错不等磁极的表贴式永磁电机极频振动的削弱[J]. 电工技术学报, 2023, 38(4): 945-956. Li Zexing, Xia Jiakuan, Liu Tiefa, et al.Reduction of pole-frequency vibration of surface-mounted per- manent magnet synchronous machines with piecewise stagger unequal poles[J]. Transactions of China Electrotechnical Society, 2023, 38(4): 945-956. [13] Cheng Ziran, Ruan Lin, Huang Shoudao, et al.Research on noise reduction of 3.6 MW evaporative cooling wind motor induced by electromagnetic and two-phase flow resonance based on stator optimi- zation[J]. Processes, 2021, 9(4): 669. [14] 刘畅, 邱鑫, 杨建飞, 等. 永磁同步电机电磁振动噪声优化方法研究[J]. 微特电机, 2023, 51(4): 20-25, 31. Liu Chang, Qiu Xin, Yang Jianfei, et al.Research on optimization method of electromagnetic vibration noise of permanent magnet synchronous motor[J]. Small & Special Electrical Machines, 2023, 51(4): 20-25, 31. [15] 陈少先, 丁树业, 申淑锋, 等. 船舶用表贴式永磁同步电机的电磁振动分析与抑制[J]. 电工技术学报, 2023, 38(5): 1275-1286, 1298. Chen Shaoxian, Ding Shuye, Shen Shufeng, et al.Analysis and suppression of electromagnetic vibration of surface mounted permanent magnet synchronous motor for ships[J]. Transactions of China Electro- technical Society, 2023, 38(5): 1275-1286, 1298. [16] 韩雪岩, 张新刚, 朱龙飞, 等. 内置式多层磁钢永磁同步电机振动噪声抑制措施[J]. 电机与控制学报, 2021, 25(8): 67-75. Han Xueyan, Zhang Xingang, Zhu Longfei, et al.Measures to reduce vibration and noise of interior permanent magnet synchronous motor with multilayer permanent magnets[J]. Electric Machines and Control, 2021, 25(8): 67-75. [17] 谢颖, 辛尉, 蔡蔚, 等. 内置式永磁同步电机不同转子拓扑结构的电磁性能及电磁振动噪声分析[J]. 电机与控制学报, 2023, 27(1): 110-119. Xie Ying, Xin Wei, Cai Wei, et al.Electromagnetic performance and electromagnetic vibration noise analysis of different rotor topologies of interior permanent magnet synchronous motor[J]. Electric Machines and Control, 2023, 27(1): 110-119. [18] 钱喆, 刘同鑫, 邓文哲, 等. 电流谐波注入的车用永磁同步驱动电机振动噪声抑制[J]. 电机与控制学报, 2022, 26(7): 115-124. Qian Zhe, Liu Tongxin, Deng Wenzhe, et al.Vibration and noise suppression of permanent magnet synchronous drive motor with harmonic current injection[J]. Electric Machines and Control, 2022, 26(7): 115-124. [19] Harries M, Woerndle A, De Doncker R W. Low vibrations and improved NVH in permanent magnet synchronous machines due to injection of flux-linkage harmonics[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10(2): 1649-1657. [20] 刘睿松, 董婷. 谐波电流注入下永磁直线同步电机振动分析[J]. 微特电机, 2023, 51(8): 16-21. Liu Ruisong, Dong Ting.Vibration analysis of permanent magnet linear synchronous motor under harmonic current injection[J]. Small & Special Electrical Machines, 2023, 51(8): 16-21. [21] Liu Feng, Wang Xiuhe, Xing Zezhi, et al.Reduction of cogging torque and electromagnetic vibration based on different combination of pole arc coefficient for interior permanent magnet synchronous machine[J]. CES Transactions on Electrical Machines and Systems, 2021, 5(4): 291-300. [22] Du Jianmin, Li Yan, Yu Zhanyang, et al.Research on radial electromagnetic force and vibration response characteristics of squirrel-cage induction motor fed by PWM inverter[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(8): 1-4. [23] Hong Jianfeng, Wang Shanming, Sun Yuguang, et al.Piecewise stagger poles with continuous skew edge for vibration reduction in surface-mounted PM synchronous machines[J]. IEEE Transactions on Industrial Electronics, 2021, 68(9): 8498-8506. [24] 夏加宽, 康乐, 詹宇声, 等. 表贴式三相永磁同步电机极槽径向力波补偿模型及参数辨识[J]. 电工技术学报, 2021, 36(8): 1596-1606. Xia Jiakuan, Kang Le, Zhan Yusheng, et al.The model of pole slot radial force wave compensation for surface-mounted three-phase permanent magnet syn- chronous motor and parameter identification[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1596-1606. [25] 张洪涛. 永磁同步电机噪声分析及优化[J]. 防爆电机, 2023, 58(5): 20-23. Zhang Hongtao.Noise analysis and optimization of PMSM[J]. Explosion-Proof Electric Machine, 2023, 58(5): 20-23. [26] 康乐, 夏加宽, 苏航, 等. 表贴式永磁电机各次电流引起径向振动的机理分析及综合抑制策略[J]. 电工技术学报, 2022, 37(18): 4638-4650. Kang Le, Xia Jiakuan, Su Hang, et al.Mechanism analysis and comprehensive suppression strategy of radial vibration induced by each current of surface magnet motor[J]. Transactions of China Electro- technical Society, 2022, 37(18): 4638-4650. |
|
|
|