|
|
Overview and Prospect of the Brushless Doubly-Fed Machine Research |
Yu Kexun, Chen Xi, Xie Xianfei, Zhao Tantan, Pan Weidong |
State Key Laboratory of Advanced Electromagnetic Technology Huazhong University of Science and Technology Wuhan 430074 China |
|
|
Abstract Brushless double-fed machines (BDFMs) are very suitable for flexible operation in specialized or extreme conditions, such as explosion-proof and flammable conditions, due to their reliable structure and fractional-rated converters, which have gained significant attention in recent years with the development of new energy generation. In order to facilitate further research and potential applications, this paper provides an overview of key issues of the BDFM and offers insights into its development directions. Firstly, this paper summarizes two field modulation modes of the BDFM and clarifies the nomenclature principle and standardized terminology for this electric machine category. The restriction on the pole number combinations is also specified, which should satisfy | pp-pc|=2k (k =1, 2, 3,…). Secondly, the existing stator and rotor schemes are classified, their operating characteristics are analyzed, and the development direction of the rotor is proposed. The wound rotor stands out for its single current loop, flexible parameter design, and excellent harmonic suppression effect, becoming the most widely used BDFM. The rotor winding can also be designed with two sets of independent rotor windings with the same phase number and each multi-phase symmetry. As long as these two sets of independently designed rotor windings are properly combined and connected according to specific rules, it becomes feasible to achieve reverse and same-direction rotor magnetomotive forces, enabling “sum modulation” and “difference modulation” magnetic field modes in the BDFM. It is an important direction for the future development and application of the wound rotor BDFM. Moreover, the steady-state equivalent circuit models of BDFM are also summarized to elucidate their operating characteristics. The synchronous- asynchronous series equivalent circuit model of BDFM (BDFM-HUST-YU circuit) shows that the torque characteristics of the BDFM result from the combination of asynchronous and synchronous torque characteristics, which are influenced not only by the power angle but also by the slip ratio. The optimization strategies of the BDFM design are summarized according to different mathematical equivalent models. Then, novel control topologies and strategies of the BDFM are listed. The complete BDFM systems suitable for typical motor drive and power generation conditions are established to illustrate their operational mechanisms. Deficiencies in the analysis, design, and control of the BDFM are also discussed. Finally, further research and application direction of key issues, such as stator and rotor schemes, analysis models, optimization design, and control system of the BDFM, are summarized and explained. The opinion on the name of the motor is put forward, and it is pointed out that the strict and appropriate name of this type of motor should be collectively called “brushless doubly-fed machine”. A comprehensive evaluation criterion for the utilization ratio of two sets of windings and one set of windings is proposed, demonstrating that the former is not lower than that of a single set of windings. It can offer valuable guidance for further in-depth research on the BDFM, facilitating its adoption in key fields like renewable energy, energy saving, and consumption reduction.
|
Received: 21 September 2022
|
|
|
|
|
[1] 王涛, 诸自强, 年珩. 非理想电网下双馈风力发电系统运行技术综述[J]. 电工技术学报, 2020, 35(3): 455-471. Wang Tao, Zhu Ziqiang, Nian Heng.Review of operation technology of doubly-fed induction generator-based wind power system under nonideal grid conditions[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 455-471. [2] 李思源, 马宏忠, 陈涛涛. 基于HHT的双馈异步发电机电刷滑环烧伤故障诊断[J]. 电力系统保护与控制, 2018, 46(16): 68-74. Li Siyuan, Ma Hongzhong, Chen Taotao.Diagnosis method based on HHT of burn fault of doubly-fed induction generator brush ring[J]. Power System Protection and Control, 2018, 46(16): 68-74. [3] 程明, 韩鹏, 魏新迟. 无刷双馈风力发电机的设计、分析与控制[J]. 电工技术学报, 2016, (19): 37-53. Cheng Ming, Han Peng, Wei Xinchi.Design, analysis and control of brushless doubly-fed generators for wind power application[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 37-53. [4] 阚超豪, 鲍习昌, 王雪帆, 等. 无刷双馈电机的研究现状与最新进展[J]. 中国电机工程学报, 2018, 38(13): 3939-3959. Kan Chaohao, Bao Xichang, Wang Xuefan, et al.Overview and recent developments of brushless doubly-fed machines[J]. Proceedings of the CSEE, 2018, 38(13): 3939-3959. [5] Hunt L J.The ‘cascade' induction motor[J]. Institu-tion of Electrical Engineers, 1914, 52: 406-426. [6] Smith B H.Theory and performance of a twin stator induction machine[J]. IEEE Transactions on Power Apparatus and Systems, 1966, 85(2): 123-131. [7] Broadway A R W, Burbridge. Self-cascaded machine: a low speed motor or high frequency brushless alternator[J]. Proceedings, Institution of Electrical Engineers, 1970, 117(7): 1277-1290. [8] Wallace A K, Spee R, Lauw H K.Dynamic modeling of brushless doubly-fed machines[C]//IEEE Indu-strial Applications Social Annual Meeting, San Diego, 1989: 329-334. [9] Williamson S, Ferreira A C, Wallace A K.Gen-eralised theory of the brushless doubly-fed machine. part 1: analysis[J]. IEE Proceedings-Electric Power Applications, 1997, 144(2): 111-122. [10] 杨柠宁. 无刷双馈电机能量传递关系与损耗发热规律研究[D]. 重庆: 重庆大学, 2021. [11] Chen Xi, Wang Xuefan.Proximate standing wave feature of magnetic field and its influence on the performance of wound rotor brushless doubly-fed machine[J]. IEEE Transactions on Energy Conversion, 2017, 32(1): 296-308. [12] 任泰安, 阚超豪, 胡杨, 等. 极对数组合形式对绕线转子无刷双馈电机性能的影响[J]. 电工技术学报, 2020, 35(03): 509-519. Ren Taian, Kan Chaohao, Hu Yang, et al.Influence of pole-pairs combination on the performance of wound-rotor brushless double-fed machine[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 509-519. [13] 胡必武, 余成. 无刷双馈电机的定子绕组比较研究[J]. 微特电机, 2007, 35(9): 10-11. Hu biwu, Yu Cheng. Comparison study for stator winding configurations of brushless doubly-fed machines[J]. Small & Special Electrical Machines, 2007, 35(9): 10-11. [14] 彭晓, 石安乐, 李永坚. 无刷双馈电机定子绕组的设计[J]. 电机与控制学报, 2003, 7(3): 191-194. Peng Xiao, Shi Anle, Li Yongjian.Design of statorwinding for brushless doubly-fed machine[J]. Electric Machines and Control, 2003, 7(3): 191-194. [15] 阚超豪, 鲍习昌, 胡杨, 等. 一种多谐波联合起动的新型无刷双馈电动机[J]. 中国电机工程学报, 2019, 39(12): 3685-3697. Kan Chaohao, Bao Xichang, Hu Yang, et al.A new-type brushless doubly-fed machine started by combined multi-harmonic fields[J]. Proceedings of the CSEE, 2019, 39(12): 3685-3696. [16] 阚超豪, 胡杨, 任泰安, 等. 基于多谐波联合起动方法的无刷双馈电机起动性能研究[J]. 电工技术学报, 2019, 34(23): 4927-4938. Kan Chaohao, Hu Yang, Ren Taian, et al.The Starting performance study of a brushless doubly-fed machine based on the multi-harmonics starting method[J]. Transactions of China Electrotechnical Society, 2019, 34(23): 4927-4938. [17] Rochelle P, Spée R, Wallace A K.The effect of stator winding configuration on the performance of brushless doubly-fed machines in adjustable speed drives[C]//IEEE Industry Applications Society Annual Meeting, Seattle, USA, 1990, 1: 331-337. [18] 杨向宇, 励庆孚. 单套定子绕组无刷双馈电机的绕组设计[J]. 中国电机工程学报, 2000, 20(8): 19-21. Yang Xiangyu, Li Qingfu.Winding design for one set windings brushless doubly-fed machines[J]. Pro-ceedings of the CSEE, 2000, 20(8): 19-21. [19] 万山明. 一种单绕组直流励磁无刷双馈电机及其控制电路[P]. 湖北省: CN114400798A, 2022-04-26. [20] Han Peng, Cheng Ming, Wei Xinchi, et al.Steady-state characteristics of the dual-stator brushless doubly fed induction generator[J]. IEEE Transactions on Industrial Electronics, 2018, 65(1): 200-210. [21] 程明, 张长国, 曾煜. 新型简单凸极转子双定子无刷双馈发电机的设计与分析[J]. 电气工程学报, 2022, 17(1): 104-113. Cheng Ming, Zhang Changguo, Zeng Yu.Design and analysis of dual-stator brushless doubly-fed generator with simple-salient-poles rotor[J]. Journal of Elec-trical Engineering, 2022, 17(1): 104-113. [22] Liu Hao, Zhang Yue, Zhang Fengge, et al.Design and performance analysis of dual-stator brushless doubly-fed machine with cage-barrier rotor[J]. IEEE Transactions on Energy Conversion, 2019, 34(3): 1347-1357. [23] Khaliq S, Modarres M, Lipo T A, et al.Design of novel axial-flux dual stator doubly fed reluctance machine[J]. IEEE Transactions on Magnetics, 2015, 51(11): 1-4. [24] Agrawal S, Province A, Banerjee A.An approach to maximize torque density in a brushless doubly fed reluctance machine[J]. IEEE Transactions on Industry Applications, 2020, 56(5): 4829-4838. [25] Benômar Y, Croonen J, Verrelst B, et al.On analytical modeling of the air gap field modulation in the brushless doubly fed reluctance machine[J]. Energies, 2021, 14(9): 1-27. [26] Liao Yuefeng, Xu Longya, Zhen Li.Design of a doubly fed reluctance motor for adjustable-speed drives[J]. IEEE Transactions on Industry Applications, 1996, 32(5): 1195-1203. [27] Knight A M, Betz R E, Dorrell D G.Design and analysis of brushless doubly fed reluctance machines[J]. IEEE Transactions on Industry App-lications, 2013, 49(1): 50-58. [28] Gay D, Betz R E, Dorrell D G, et al.Brushless doubly fed reluctance machine testing for parameter deter-mination[J]. IEEE Transactions on Industry App-lications. 2019, 55(3): 2611-2619. [29] 张凤阁, 王凤翔, 王正. 不同转子结构无刷双馈电机稳态运行特性的对比实验研究[J]. 中国电机工程学报, 2002, 22(4): 53-55. Zhang Fengge, Wang Fengxiang, Wang Zheng.Comparative experiment study on the performance of doubly-fed brushless machine with different rotor structures[J]. Proceedings of the CSEE, 2002, 22(4): 52-55. [30] Hsieh M, Chang Y, Dorrell D G.Design and analysis of brushless doubly fed reluctance machine for renewable energy applications[J]. IEEE Transactions on Magnetics, 2016, 52(7): 1-5. [31] 龚晟, 杨向宇, 纪梁洲. 磁阻型无刷双馈电机特殊转子优化设计[J]. 电力自动化设备, 2012, 32(8): 60-65. Gong Sheng, Yang Xiangyu, Ji Liangzhou.Optimal design of special reluctance rotor for brushless doubly-fed motor[J]. Electric Power Automation Equipment, 2012, 32(8): 60-65. [32] Han Peng, Zhang Julia, Cheng Ming.Analytical analysis and performance characterization of brushless doubly fed machines with multibarrier rotors[J]. IEEE Transactions on Industry Applications, 2019, 55(6): 5758-5767. [33] Chen Xi, Pan Weidong, Wang Xuefan.Analytical calculation of air-gap magnetic field in brushless doubly-fed reluctance machine with flux barriers[J]. IEEE Transactions on Energy Conversion, 2022, 37(2): 1292-1303. [34] Tavner P J, McMahon R A, Roberts P, et al. Rotor design and performance for a BDFM[C]//17th International Conference on Electrical Machines, Chania Crete, 2006: 8959240. [35] Gorginpour H, Oraee H, Jandaghi B.A novel rotor configuration for brushless doubly-fed induction generators[J]. IET Electric Power Applications, 2013, 7(2): 106-115. [36] McMahon R A, Tavner P, Abdi E, et al. Charac-terising brushless doubly fed machine rotors[J]. IET Electric Power Applications, 2013, 7(7): 535-543. [37] Abdi E, McMahon R A, Malliband P, et al. Performance analysis and testing of a 250 kW medium-speed brushless doubly-fed induction gen-erator[J]. IET Renewable Power Generation, 2013, 7(6): 631-638. [38] 韩力, 韩雪峰, 欧先朋, 等. 无刷双馈电机运行特性的等效磁网络分析法[J]. 电机与控制学报, 2019, 23(1): 27-34. Han Li, Han Xuefeng, Ou Xianpeng, et al.Operating performances analysis of brushless doubly-fed machine using magnetic equivalent circuit[J]. Electric Machines and Control, 2019, 23(1): 27-34. [39] 邓先明, 方荣惠, 王抗, 等. 等距笼型转子无刷双馈电机的有限元分析[J]. 电机与控制学报, 2009, 13(4): 507-510. Deng Xianming, Fang Ronghui, Wang Kang, et al.Finite element analysis of brushless doubly-fed machine with equidistant cage rotor[J]. Electric Machines and Control, 2009, 13(4): 507-510. [40] 杨顺昌. 无刷双馈电机的电磁设计特点[J]. 中国电机工程学报, 2001, 21(7): 107-110. Yang Shunchang.Feature of electromagetic design for brushless doubly-fed machines[J]. Proceedings of the CSEE, 2001, 21(7): 107-110. [41] 张爱玲, 熊光煜, 刘振富, 等. 无刷双馈电机能量传递关系和功率因数特性的实验研究[J]. 中国电机工程学报, 2011, 31(6): 92-97. Zhang Ailing, Xiong Guangyu, Liu Zhenfu, et al.Experimental study on energy transmission and power factor characteristics of brushless doubly-fed machindes[J]. Proceeding of the CSEE, 2011, 31(6): 92-97. [42] 白崟儒, 王淑红, 张爱玲, 等. 笼型无刷双馈电机稳态下转矩角的物理含义[J]. 太原理工大学学报, 2019, 50(2): 197-202. Bai Yinru, Wang Shuhong, Zhang Ailing, et al.Physical meaning of torque angle of cage rotor brushless doubly-fed machines in steady operation[J]. Journal of Taiyuan University of Technology, 2019, 50(2): 197-202. [43] Strous T D, Wang Xuezhou, Polinder H, et al.Evaluating harmonic distortions in brushless doubly fed induction machines[J]. IEEE Transactions on Magnetics, 2017, 53(1): 1-10. [44] Chen Jiansheng, Zhang Wei.Harmonics in brushless doubly fed induction generator for torque ripple analysis and modeling[J]. IEEE Transactions on Magnetics, 2014, 50(11): 1-4. [45] Gorginpour H, Oraee H, Abdi E.Calculation of core and stray load losses in brushless doubly fed induction generators[J]. IEEE Transactions on Industrial Electronics, 2014, 61(7): 3167-3177. [46] Olubamiwa O I, Gule N.A review of the advancements in the design of brushless doubly fed machines[J]. Energies, 2022, 15(3): 725. [47] 王雪帆. 一种转子绕组采用变极法设计的新型无刷双馈电机[J]. 中国电机工程学报, 2003, 23(6): 108-127. Wang Xuefan.A new brushless doubly-fed machine with a wound-rotor changing-pole winding[J]. Pro-ceedings of the CSEE, 2003, 23(6): 108-127. [48] 阚超豪, 王雪帆, 熊飞. 转子绕组星-环形拓扑结构无刷双馈电机[J]. 中国电机工程学报, 2011, 31(3): 111-117. Kan Chaohao, Wang Xuefan, Xiong Fei.A brushless doubly-fed machine with star-circle rotor winding[J]. Proceedings of the CSEE, 2011, 31(3): 111-117. [49] 阚超豪, 王雪帆. 齿谐波法设计的无刷双馈发电机运行范围[J]. 中国电机工程学报, 2011, 31(24): 124-130. Kan Chaohao, Wang Xuefan.Operation range of brushless doubly-fed machine based on slot-harmonics[J]. Proceedings of the CSEE, 2011, 31(24): 124-130. [50] 熊飞, 王雪帆, 程源. 不等匝线圈转子结构的无刷双馈电机研究[J]. 中国电机工程学报, 2012, 32(36): 82-88. Xiong Fei, Wang Xuefan, Cheng Yuan.Studies of brushless doubly-fed machines with an unequal-turn coil rotor structure[J]. Proceedings of the CSEE, 2012, 32(36): 82-88. [51] 阚超豪, 王雪帆. 64kW双正弦结构无刷双馈发电机的设计与测试[J]. 中国电机工程学报, 2013, 33(33): 115-122. Kan Chaohao, Wang Xuefan.Design and testing of a 64kW doubly-sine wound Rotor brushless doubly-fed induction generator[J]. Proceedings of the CSEE, 2013, 33(33): 115-122. [52] Xiong Fei, Wang Xuefan.Design of a low-harmonic-content wound rotor for the brushless doubly fed generator[J]. IEEE Transactions on Energy Con-version, 2014, 29(1): 158-168. [53] Yu Kexun, Zhao Tantan, Xie Xianfei, et al.Design and transient experimental analysis of a pulsed brushless doubly fed alternator in a capacitor charge power supply system[J]. IET Electric Power App-lications, 2022, 16(1): 126-136. [54] 竺东杰, 智刚. 无刷双馈电机转子线圈及工装的设计[J]. 上海电气技术, 2019, 12(3): 48-50. Zhu Dongjie, Zhi Gang.Rotor coil and its tooling design of the brushless doubly-fed machine, Journal of Shanghai Electric Technology, 2019, 12(3): 48-50. [55] 贾磊, 王雪帆, 熊飞. 700kW船用轴带无刷双馈发电机的设计与测试[J]. 电工技术学报, 2016, 31(15): 32-42. Jia Lei, Wang Xuefan, Xiong Fei.Design and test of a 700kW ship shaft brushless doubly-fed generator[J]. Transactions of China Electrotechnical Society, 2016, 31(15): 32-42. [56] 陈静. 应用于多种变速恒频发电场合的无刷双馈电机控制策略研究[D]. 武汉: 华中科技大学, 2020. [57] Chen Xi, Wang Xuefan, Kong Ming, et al.Design of a medium-voltage high-power brushless doubly fed motor with a low-voltage fractional convertor for the circulation pump adjustable speed drive[J]. IEEE Transactions on Industrial Electronics, 2022, 69(8): 7720-7732. [58] Cheng Yuan, Yu Bo, Kan Chaohao, et al.Design and performance study of a brushless doubly fed generator based on differential modulation[J]. IEEE Transa-ctions on Industrial Electronics, 2020, 67(12): 10024-10034. [59] Pan Weidong, Chen Xi, Wang Xuefan.Generalized design method of the three-phase y-connected wound rotor for both additive modulation and differential modulation brushless doubly fed machines[J]. IEEE Transactions on Energy Conversion, 2021, 36(3): 1940-1952. [60] 张凤阁, 王秀平, 贾广隆, 等. 无刷双馈电机复合转子结构参数的优化设计[J]. 电工技术学报, 2014, 29(1): 77-84. Zhang Fengge, Wang Xiuping, Jia Guanglong, et al.Optimum design for composite rotor structural parameters of brushless doubly-fed machine[J]. Transaction of China Electrotechnical Society, 2014, 29(1): 77-84. [61] Zhang Fengge, Yu Siyang, Wang Yutao, et al.Design and performance comparisons of brushless doubly fed generators with different rotor structures[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 631-640. [62] 张凤阁, 蒋晓东, 李应光, 等. 新型磁障转子无刷双馈电机热计算[J]. 中国电机工程学报, 2018, 38(9): 2745-2752. Zhang Fengge, Jiang Xiaodong, Li Yingguang.Thermal calculation on a brushless doubly-fed machine with a magnetic barrier rotor[J]. Proceedings of the CSEE, 2018, 38(9): 2745-2752. [63] 蒋晓东, 张凤阁, 周党生, 等. 双定子笼障转子无刷双馈发电机冷却空气流变特性数值分析[J]. 电工技术学报, 2019, 34(3): 466-473. Jiang Xiaodong, Zhang Fengge, Zhou Dangsheng, et al.Numerical analysis of cooling air flow chara-cteristic for double stator cage-barrier rotor brushless doubly-fed generator[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 466-473. [64] Wen Honghui, Cheng Ming, Zhang Gan.Principle and performance of a new brushless doubly fed reluctance machine with asymmetrical composite modulator[J]. IEEE Transactions on Industrial Electronics. 2022, 69(12): 12086-12095. [65] 黄长喜, 阚超豪, 任泰安, 等. 磁阻式无刷双馈电机的转子结构及其性能分析[J]. 电工技术学报, 2017, 32(增刊2): 26-33. Huang Changxi, Kan Chaohao, Ren Taian, et al.Performance analysis on brushless doubly-fed motor with reluctance rotor[J]. Transactions of China Electrotechnical Society, 2017, 32(S2): 26-33. [66] 任泰安, 阚超豪, 吴红斌, 等. 新型混合式转子无刷双馈电机[J]. 中国电机工程学报, 2018, 38(9): 2753-2762. Ren Taian, Kan Chaohao, Wu Hongbin, et al.A new hybrid rotor of brushless doubly-fed machines[J]. Proceedings of the CSEE, 2018, 38(9): 2753-2762. [67] Li R, Spée R, Wallace A K, et al.Synchronous drive performance of brushless doubly-fed motors[J]. IEEE Transactions on Industry Application, 1994, 30(4): 963-970. [68] 张凤阁, 王凤翔, 徐隆亚. 磁阻和笼型转子无刷双馈电机的统一等效电路和转矩公式[J]. 中国电机工程学报, 1999, 19(11): 29-32, 46. Zhang Fengge, Wang Fengxiang, Xu Longya.The equivalent circuit and torque formula of doubly-fed brushless machine with reluctance and cage rotor[J]. Proceedings of the CSEE, 1999, 19(11): 29-32, 46. [69] 邓先明, 姜建国, 方荣惠. 笼型转子无刷双馈电机的电磁分析和等效电路[J]. 电工技术学报, 2005, 20(8): 19-23, 28. Deng Xianming, Jiang Jianguo, Fang Ronghui.The electromagnetic analysis and equivalent circuit of brushless doubly-fed machine with cage rotor[J]. Transaction of China Electrotechnical Society, 2005, 20(8): 19-23, 28. [70] Roberts P C, McMahon R A, Tavner P J, et al. Equivalent circuit for the brushless doubly-fed machine (BDFM) including parameter estimation[J]. IEE Proceedings-Electric Power Applications, 2005, 152(4): 933-942. [71] McMahon R A, Roberts P C, Wang X, et al. Performance of BDFM as generator and motor[J]. IEE Proceedings-Electric Power Applications, 2006, 153(2): 289-299. [72] McMahon R A, Roberts P C, Tatlow M, et al. Rotor parameter determination for the brushless doubly fed (induction) machine[J]. IET Electric Power Appli-cations, 2015, 9(8): 549-555. [73] 熊飞, 王雪帆, 张经纬, 等. 绕线转子无刷双馈电机的链型等效电路模型[J]. 电工技术学报, 2010, 25(2): 15-21. Xiong Fei, Wang Xuefan, Zhang Jingwei, et al.Chain equivalent circuit model of wound-rotor brushless doubly-fed machine[J]. Transactions of China Elec-trotechnical Society, 2010, 25(2): 15-21. [74] 刘光军, 王雪帆, 熊飞. 绕线转子无刷双馈电机‘π'型等效电路[J]. 中国电机工程学报, 2016, 36(20): 5632-5638, 5740. Liu Guangjun, Wang Xuefan, Xiong Fei.A ‘π'-type equivalent circuit of wound rotor brushless doubly-fed machines[J]. Proceedings of the CSEE, 2016, 36(20): 5632-5638, 5740. [75] 高信迈. 基于齿驻波无刷双馈电机的矢量控制策略研究[D]. 武汉: 华中科技大学, 2018. [76] Hashemnia M, Tahami F, Oyarbide E.Investigation of core loss effect on steady-state characteristics of inverter fed brushless doubly fed machines[J]. IEEE Transactions on Energy Conversion, 2014, 29(1): 57-64. [77] Sadeghi R, Madani S M, Lipo T A, et al.Voltage-dip analysis of brushless doubly fed induction generator using reduced T-model[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7510-7519. [78] Ge Jian, Xu Wei, Liu Yi, et al.Novel equivalent circuit model applicable to all operation modes for brushless doubly-fed induction machines[J]. IEEE Transactions on Industrial Electronics, 2022, 69(12): 12540-12550. [79] 于克训, 汤鹏. 有刷双馈电机等效电路模型与特性分析[J]. 中国电机工程学报, 2018, 38(8): 2467-2475, 2556. Yu Kexun, Tang Peng.Equivalent circuit model and characteristic analysis of doubly-fed machine[J]. Proceedings of the CSEE, 2018, 38(8): 2467-2475, 2556. [80] 于克训, 汤鹏. 无刷双馈电机等效电路模型与特性分析[J]. 中国电机工程学报, 2018, 38(14): 4222-4231, 4328. Yu Kexun, Tang Peng.Equivalent circuit model and characteristic analysis of brushless doubly-fed machine[J]. Proceedings of the CSEE, 2018, 38(14): 4222-4231, 4328. [81] Dorrell D, Knight A M, Betz R E, Improvements in brushless doubly fed reluctance generators using high-flux-density steels and selection of the correct pole numbers[J]. IEEE Transactions on Magnetics, 2011, 47(10): 4092-4095. [82] Knight A M, Betz R E, Dorrell D.Design principles for brushless doubly fed reluctance machines[C]// IECON 2011 37th Annual Conference on IEEE Industrial Electronics Society, Melbourne, 2011: 3602-3607. [83] Rebeiro R S, Knight A M.Design and torque capability of a ducted rotor brushless doubly fed reluctance machine[J]. IET Electric Power Appli-cations, 2018, 12(7): 1058-1064. [84] Hsieh M F, Lin I H, Dorrell D G.An analytical method combining equivalent circuit and magnetic circuit for BDFRG[J]. IEEE Transactions on Mag-netics, 2014, 50(11): 1-5. [85] Staudt T, Wurtz F, Batistela N J, et al.Influence of rotor design and geometric parameter variation on global performance of brushless doubly-fed relu-ctance machines[C]//Proceedings of the International Conference on Electrical Machines, Berlin, 2014: 537-543. [86] Staudt T, Wurtz F, Gerbaud L, et al.An optimization-oriented sizing model for brushless doubly fed reluctance machines: development and experimental validation[J]. Electric Power Systems Research, 2016, 132: 125-131. [87] 杨向宇, 龚晟, 纪梁洲. 凸极转子无刷双馈电机的转子优化及特性研究[J]. 微电机, 2011, 44(9): 38-40, 70. Yang Xiangyu, Gong Sheng, Ji Liangzhou.Optimi-zation and research on characteristics of salient pole rotor of BDFM[J]. Micromotors, 2011, 44(9): 38-40, 70. [88] Khaliq S, Atiq S, Lipo T A, et al.Rotor pole optimization of novel axial-flux brushless doubly fed reluctance machine for torque enhancement[J]. IEEE Transactions on Magnetics, 2016, 52(7): 1-4. [89] McMahon R A, Wang X, Abdi E, et al. The BDFM as a generator in wind turbines[C]//2006 Power Electronics and Motion Control Conference, Portoroz, Slovenia, 2006: 1859-1865. [90] Wang X, Roberts P C, McMahon R A. Optimisation of BDFM stator design using an equivalent circuit model and a search method[C]//2006 3rd IET International Conference on Power Electronics, Machines and Drives, Dublin, Ireland, 2006: 606-610. [91] McMahon R A, Mathekga M E, Wang X, et al. Design considerations for the brushless doubly-fed (induction) machine[J]. IET Electric Power Applications, 2016, 10(5): 394-402. [92] Oraee A, McMahon R A, Abdi E, et al. Influence of pole-pair combinations on the characteristics of the brushless doubly fed induction generator[J]. IEEE Transactions on Energy Conversion, 2020, 35(3): 1151-1159. [93] Hsieh M F, Lin I H, Hsu Y C, et al.Design of brushless doubly-fed machines based on magnetic circuit modeling[J]. IEEE Transactions on Magnetics, 2012, 48(11): 3017-3020. [94] Abdi E, Tatlow M R, McMahon R A, et al. Design and performance analysis of a 6 MW medium-speed brushless DFIG[C]//2013 2nd IET Renewable Power Generation Conference, Beijing, China, 2013: 1-4. [95] Abdi S, Abdi E, Oraee A, et al.Optimization of mag-netic circuit for brushless doubly fed machines[J]. IEEE Transactions on Energy Conversion, 2015, 30(4): 1611-1620. [96] 阚超豪, 王雪帆, 汤化伟. 基于改进粒子群优化算法的绕线式无刷双馈电机参数测定[J]. 微电机, 2008(7): 5-8,15. Kan Chaohao, Wang Xuefan, Tang Huawei.Com-putation of parameters of brushless doubly-fed machine based on improved particle swarm optimization algorithm[J]. Micromotors, 2008(7): 5-8, 15. [97] 万山明, 吴芳, 王雪帆. 4/8极无刷双馈电机的转子绕组设计[J]. 微电机, 2015, 48(6): 1-8, 27. Wan Shanming, Wu Fang, Wang Xuefan.Rotor winding design method of 4/8 pole brushless doubly fed machine[J]. Micromotors, 2015, 48(6): 1-8, 27. [98] 黄长喜, 杨淑英, 阚超豪. 转子绕组星-三角接法的无刷双馈电机设计优化[J]. 微电机, 2013, 46(9): 31-35. Huang Changxi, Yang Shuying, Kan Chaohao.Design optimization of brushless doubly-fed generator with wound-rotor in the form of star-delta[J]. Micromotors, 2013, 46(9): 31-35. [99] Chang Y H, Li Y T, Lin I H, et al.A design approach integrating the magnetic circuit and electric circuit models for BDFIM[C]//2014 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, China, 2014: 1685-1690. [100] 刘宪栩, 章玮. 笼型无刷双馈电机转子的优化设计与有限元分析[J]. 微电机, 2007, 40(1): 20-21. Liu Xianyu, Zhang Wei.Optimal design and FEM analysis of brushless doubly-fed machine with rage rotor[J]. Micromotor, 2007, 40(1): 20-21. [101] Wang Xuezhou, Strous T D, Lahaye D, et al.Modeling and optimization of brushless doubly-fed induction machines using computationally efficient finite-element analysis[J]. IEEE Transactions on Industry Applications, 2016, 52(6): 4525-4534. [102] Gorginpour H, Oraee H, McMahon R A. Electromagnetic-thermal design optimization of the brushless doubly fed induction generator[J]. IEEE Transactions on Industrial Electronics. 2014, 61(4): 1710-1721. [103] Olubamiwa O I, Gule N.Design and optimization of a Cage+Nested loops rotor BDFM[C]//2020 Inter-national Conference on Electrical Machines (ICEM), Gothenburg, Sweden, 2020: 1868-1874. [104] Poza J, Oyarbide E, Roye D, et al.Unified reference frame d-q model of the brushless doubly fed machine[J]. IET Proceedings-Electric Power Appli-cations, 2006, 153(5): 726-734. [105] Han Peng, Cheng Ming, Wei Xinchi, et al.Modeling and performance analysis of a dual-stator brushless doubly fed induction machine based on spiral vector theory[J]. IEEE Transactions on Industry Appli-cations, 2016, 52(2): 1380-1389. [106] Yang Jian, Tang Weiyi, Zhang Guanguan, et al.Sensorless control of brushless doubly fed induction machine using a control winding current MRAS observer[J]. IEEE Transactions on Industrial Elec-tronics, 2019, 66(1): 728-738. [107] Wang Hui, Chen Xida, Zhao Xun, et al.A cascade PI-SMC method for Matrix converter-fed BDFIM drives[J]. IEEE Transactions on Transportation Elec-trification, 2019, 7(4): 2541-2550. [108] 夏超英, 张耀华, 郭海宇. 无刷双馈电机反馈线性化控制方法[J]. 电工技术学报, 2020, 35(7): 1387-1397. Xia Chaoying, Zhang Yaohua, Guo Haiyu.Feedback linearization control approach of brushless doubly fed machine[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1387-1397. [109] Hesar H M, Abootorabi Zarchi H, Arab Markadeh G, et al.Maximum torque per total ampere strategy for vector-controlled brushless doubly fed induction machine drive taking iron loss into account[J]. IEEE Transactions on Power Electronics, 2022, 37(11): 13598-13605. [110] Li Zhenping, Wang Xuefan, Kong Ming, et al.Bidirectional harmonic current control of brushless doubly fed motor drive system based on a fractional unidirectional converter under a weak grid[J]. IEEE Access, 2021, 9: 19926-19938. [111] 李珍平, 王雪帆, 陈曦, 等. 无刷双馈电机的双馈与异步起动控制策略[J]. 电工技术学报, 2022, 37(14): 3576-3586. Li Zhenping, Wang Xuefan, Chen Xi, et al.Doubly fed and asynchronous starting control strategies of brushless doubly fed machine[J]. Transactions of China Electrotechnical Society, 2022, 37(14): 3576-3586. [112] 韩鹏. 双定子无刷双馈电机设计与驱动控制[D]. 南京: 东南大学, 2017. [113] Rebeiro R S, Knight A M.Two-converter-based frequency-sharing operation and control of a brush-less doubly fed reluctance motor drive[J]. IEEE Transactions on Industry Applications, 2019, 55(6): 5873-5880. [114] Peng Peng, Chen Luke, Wang Xiaodan, et al.Design of a brushless doubly-fed machine for aviation electric propulsion[J]. IEEE Transactions on Industry Applications, 2022, 58(5): 6057-6068. [115] Zhu Liancheng, Zhang Fengge, Jin Shi, et al.Opti-mized power error comparison strategy for direct power control of the open-winding brushless doubly fed wind power generator[J]. IEEE Transactions on Sustainable Energy, 2019, 10(4): 2005-2014. [116] Zhang Fengge, Zhu Liancheng, Jin Shi, et al.Con-troller strategy for open-winding brushless doubly-fed wind power generator with common mode voltage elimination[J]. IEEE Transactions on Industrial Elec-tronics, 2019, 66(2): 1098-1107. [117] Zhang Ailing, Chen Zhengfang, Gao Ruozhong, et al.Crowbarless symmetrical low-voltage ride through based on flux linkage tracking for brushless doubly fed induction generators[J]. IEEE Transactions on Industrial Electronics, 2019, 67(9): 7606-7616. [118] Lu Min, Chen Yu, Zhang Debin, et al.Virtual syn-chronous control based on control winding orientation for brushless doubly fed induction generator (BDFIG) wind turbines under symmetrical grid faults[J]. Energies, 2019, 12(2): 1-12. [119] 苏晓英, 朱连成, 金石, 等. 一种复合转子无刷双馈风力发电机直接功率控制研究[J]. 电工技术学报, 2020, 35(3): 494-501. Su Xiaoying, Zhu Liancheng, Jin Shi, et al.Research on direct power control for brushless doubly-fed wind power generator with a novel hybrid rotor[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 494-501. [120] Jin Shi, Shi Long, Zhang Yue, et al.Fault-tolerant control strategy of open-winding brushless doubly fed wind power generator based on direct power con-trol[J]. IET Electric Power Application, 2021, 15(7): 799-810. [121] Cheng Ming, Luo Rensong, Wei Xinchi.Design and analysis of current control methods for brushless doubly fed induction machines[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 717-727. [122] 许利通, 程明, 魏新迟, 等. 考虑损耗的无刷双馈风力发电系统功率反馈法最大功率点跟踪控制[J].电工技术学报, 2020, 35(3): 472-480. Xu Litong, Cheng Ming, Wei Xinchi, et al.Power signal feedback control of maximum power point tracking control for brushless doubly-fed wind power generation system considering loss[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 472-480. [123] Yan Xiaoming, Cheng Ming, Xu Litong, et al.Dual-objective control using an SMC-based CW current controller for cascaded brushless doubly fed induction generator[J]. IEEE Transactions on Industry Applications, 2020, 56(6): 7109-7120. [124] 魏新迟, 许利通, 骆仁松, 等. 考虑饱和效应的无刷双馈发电机功率模型预测控制[J]. 电工技术学报, 2021, 36(17): 3721-3729. Wei Xinchi, Xu Litong, Luo Rensong, et al.Model predictive power control of brushless doubly-fed induction generator considering saturation effect[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3721-3729. [125] Xu Litong, Cheng Ming, Wei Xinchi, et al.Dual synchronous rotating frame current control of brushless doubly fed induction generator under unbalanced network[J]. IEEE Transactions on Power Electronics, 2021, 36(6): 6712-6724. [126] Zeng Yu, Cheng Ming, Wei Xinchi, et al.Grid-connected and standalone control for dual-stator brushless doubly fed induction generator[J]. IEEE Transactions on Industrial Electronics, 2021, 68(10): 9196-9206. [127] Yan Xiaoming, Cheng Ming.A MRAS observer based speed sensorless control method for dual-cage rotor brushless doubly fed induction generator[J]. IEEE Transactions on Power Electronics, 2022, 37(10): 12705-12714. [128] Su Jingyuan, Chen Yu, Zhang Debin, et al.Full-parameter identification model based on back pro-pagation algorithm for brushless doubly fed induction generator[J]. IEEE Transactions on Power Electronics, 2020, 35(10): 9953-9958. [129] Hu Sheng, Zhu Guorong, Kang Yong. modeling and coordinated control design for brushless doubly-fed induction generator-based wind turbine to withstand grid voltage unbalance[J]. IEEE Access, 2021, 9: 63331-633441. [130] Zhang Debin, Chen Yu, Su Jingyuan, et al.Dual-mode control for brushless doubly fed induction generation system based on control-winding-current orientation[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(2): 1494-1506. [131] Jovanović M, Ademi S, Binns R.Sensorless variable speed operation of doubly-fed reluctance wind gen-erators[J]. IET Renew. Power Gener, 2020, 14(15): 2810-2819. [132] Hesar H M, Zarchi H A, Markadeh G A, et al.Online MTPTA and MTPIA control of brushless doubly fed induction motor drives[J]. IEEE Transactions on Power Electronics, 2021, 36(1): 691-701. [133] Nie Pengcheng, Wang Xuefan, Kong Ming.Dynamic analysis and oscillation elimination of brushless doubly fed wind power generation system during symmetrical voltage dips[J]. IET Renew Power Gener, 2021, 15(2): 267-277. [134] Jiang Yunlei, Cheng Ming, Han Peng, et al.Analysis and dynamic control of a dual-stator BDFIG-DC system supplying DC grid with minimized torque ripple through harmonic current injection[J]. IEEE Transactions on Power Electronics, 2019, 34(6): 5388-5399. [135] 刘毅, 张茂鑫, 徐伟. 一种无刷双馈电机直流发电系统转矩脉动抑制装置及方法: CN114157201A[P].2022-03-08. [136] Liu Yi, Xu Wei, Teng Long, et al.An improved rotor speed observer for standalone brushless doubly-fed induction generator under unbalanced and nonlinear loads[J]. IEEE Transactions on Power Electronics, 2019, 35(1): 775-788. [137] Liu Yi, Xu Wei, Zhu Jianguo, et al.Sensorless control of standalone brushless doubly fed induction gen-erator feeding unbalanced loads in a ship shaft power generation system[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 739-749. [138] Xu Wei, Omer Mohammed Elbabo M, Liu Yi, et al. Negative Sequence Voltage Compensating for Unba-lanced Standalone Brushless Doubly-Fed Induction Generator[J]. IEEE Transactions on Power Elec-tronics, 2020, 35(1): 667-680. [139] Xu Wei, Ebraheem A K, Liu Yi, et al.An MRAS speed observer based on control winding flux for sensorless control of stand-alone BDFIGs[J]. IEEE Transactions on Power Electronics, 2020, 35(7): 7271-7281. [140] Xu Wei, Mohamed G Hussien, Liu Yi, et al.Sensorless voltage control schemes for brushless doubly-fed induction generators in stand-alone and grid-connected applications[J]. IEEE Transactions on Energy Conversion, 2020, 35(4): 1781-1795. [141] 徐伟, 陈俊杰, 刘毅, 等. 无刷双馈独立发电系统的改进无参数预测电流控制[J]. 电工技术学报, 2021, 36(19): 4002-4015. Xu Wei, Chen Junjie, Liu Yi, et al.Improved nonparametric predictive current control for standa-lone brushless doubly-fed induction generators[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4002-4015. [142] Omer Mohammed Elbabo M, Xu Wei, Liu Yi, et al. An improved control method for standalone brushless doubly fed induction generator under unbalanced and nonlinear loads using dual-resonant controller[J]. IEEE Transactions on Industrial Electronics, 2021, 68(7): 5594-5605. [143] Hussien M G, Liu Yi, Xu Wei, et al.Improved MRAS rotor position observer based on control winding power factor for stand-alone brushless doubly-fed induction generators. IEEE Transactions on Energy Conversion, 2022. 37(1): 707-717. [144] Liu Yi, Zhang Maoxin, Xu Wei, et al.Optimized torque ripple suppression method for Standalone brushless doubly fed induction generator with special loads[J]. IEEE Transactions on Power Electronics, 2022, 37(9): 10981-10993. [145] Su Jingyuan, Chen Yu, Zhang Debin, et al.Stand-alone brushless doubly fed generation control system with feedforward parameters identification[J]. IEEE Transactions on Industrial Informatics, 2019, 15(11): 6011-6022. |
|
|
|