|
|
Review on Development of Permanent Magnet In-Wheel Motors |
Guan Tao, Liu Dameng, He Yongyong |
State Key Laboratory of Tribology in Advanced Equipment Department of Mechanical Engineering Tsinghua University Beijing 100084 China |
|
|
Abstract Due to the advantages of small size, high power density, and high efficiency, the permanent magnet (PMSM) motor can be widely applied in electrical vehicles, new energy power generation, flywheel energy storage, machine tool equipment, and aerospace. This paper compares the characteristics and performance indicators of in-wheel motor products from domestic and international manufacturers. Then, the basic structure, characteristics, technology, and materials of the PMSM are dissected. Different schemes and structures are explored, with an emphasis on high efficiency, power density, reliability, and wide speed regulation. Finally, the common scientific problems of the PMSM motor are summarized, and the technical paths to improve the efficiency and power density are explored, providing a reference for future research and application of in-wheel motors. Two primary integration forms for in-wheel motor drive systems, namely deceleration drive and direct drive, are discussed. The emergence of compact planetary reducers is highlighted, particularly for deceleration-driven hub motor systems, presenting great competitive advantages, especially in heavy-duty vehicle applications. In the 21st century, in-wheel motor technology has been widely developed, with Foreign technologies leading the way, particularly in Europe. The main research and development enterprises are Schaeffler, Protean, Elaphe, NTN, TM4, and Michelin. The products of Schaeffler are all inner rotor structures. The products of Protean are outer rotor direct drive structures. Domestic technology is also continuously developing. Representatives are THIM Tianhai, Edes, Tate, and Shanghai Electric Drive. Shanghai Electric Drive and Shanghai University jointly developed an in-wheel motor with the same overall power density as the Protean's products. According to the direction of the motor's magnetic field, a permanent magnet in-wheel motor can be divided into a radial flux motor, axial flux motor, and transverse flux motor. Radial flux motors remain mainstream in the market due to their low cost and mature technology. Axial flux motors exhibit the characteristics of axial compactness and high-power density, but the process is complex. The transverse flux motors have the characteristics of electromagnetic load decoupling, high power density, and high design freedom. However, their power factor is low with magnetic flux leakage and a complex structure. New materials are critical in overcoming development bottlenecks of in-wheel motors. Achieving lightweight design, efficient heat dissipation capacity, and copper content are identified as key objectives to reduce losses, enhance torque movement, and improve operation efficiency. By leveraging electromagnetic characteristics, these innovations contribute to increased power/torque density, expanded speed operation range, and reduced NVH and motor cost.
|
Received: 30 August 2022
|
|
|
|
|
[1] 顾云青, 张立军. 电动汽车电动轮驱动系统开发现状与趋势[J]. 汽车研究与开发, 2004(12): 27-30. Gu Yunqing, Zhang Lijun.Development status and trend of electric wheel drive system for electric vehicles[J]. Automobile Research & Development, 2004(12): 27-30. [2] 鲍晓华, 刘佶炜, 孙跃, 等. 低速大转矩永磁直驱电机研究综述与展望[J]. 电工技术学报, 2019, 34(6): 1148-1160. Bao Xiaohua, Liu Jiwei, Sun Yue, et al.Review and prospect of low-speed high-torque permanent magnet machines[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1148-1160. [3] 何国俊. 新能源汽车技术的技术原理和优缺点[J]. 内燃机与配件, 2022(4): 245-247. He Guojun.Technical principles, advantages and disadvantages of new energy vehicle technology[J]. Internal Combustion Engine & Parts, 2022(4): 245-247. [4] 孔垂毅, 代颖, 罗建. 电动汽车轮毂电机技术的发展现状与发展趋势[J]. 电机与控制应用, 2019, 46(2): 101-108, 113. Kong Chuiyi, Dai Ying, Luo Jian.Development status and trend of in-wheel motor technology for electric vehicles[J]. Electric Machines & Control Application, 2019, 46(2): 101-108, 113. [5] 姚蓝霓, 李钦豪, 杨景旭, 等. 考虑电动汽车充放电支撑的配用电系统综合无功优化[J]. 电力系统自动化, 2022, 46(6): 39-47. Yao Lanni, Li Qinhao, Yang Jingxu, et al.Com-prehensive reactive power optimization of power distribution and consumption system with support of electric vehicle charging and discharging[J]. Auto-mation of Electric Power Systems, 2022, 46(6): 39-47. [6] 陈金荣, 杨小祥, 赵礼辉. 电动轮的优化设计[J]. 农业装备与车辆工程, 2021, 59(5): 135-140. Chen Jinrong, Yang Xiaoxiang, Zhao Lihui.Light-weight design of electric wheel[J]. Agricultural Equipment & Vehicle Engineering, 2021, 59(5): 135-140. [7] 牙举锋. 轮毂电机技术在新能源汽车上的应用分析[J]. 时代汽车, 2023(11): 92-94. Ya Jufeng.Application analysis of in-wheel motor technology in new energy vehicles[J]. Auto Time, 2023(11): 92-94. [8] 吴世华, 崔淑梅. 电动汽车用永磁轮式电机综述[J]. 微特电机, 2005, 33(6): 40-43, 45. Wu Shihua, Cui Shumei.The review of permanent magnet wheel motor in electric vehicle application[J]. Small & Special Machines, 2005, 33(6): 40-43, 45. [9] Li Xiaohua, Wang Rumei.The future trends of in-wheel motors for electric vehicles[C]//2011 Inter-national Conference on Consumer Electronics, Communications and Networks (CECNet), Xianning, China, 2011: 5390-5393. [10] 李艳凯, 郭振兴, 张清艺, 等. 轴向磁通与径向磁通永磁同步电机性能对比[J]. 微特电机, 2021, 49(12): 8-13. Li Yankai, Guo Zhenxing, Zhang Qingyi, et al.Performance comparison between axial flux and radial flux permanent magnet synchronous gen-erator[J]. Small & Special Electrical Machines, 2021, 49(12): 8-13. [11] Chan C C.An overview of electric vehicle tech-nology[J]. Proceedings of the IEEE, 1993, 81(9): 1202-1213. [12] 辜承林. 轮毂电机发展思考[J]. 电机技术, 2006(3): 3-6. Gu Chenglin.An overview of in-wheel motors and drives for electric vehicles[J]. Electrical Machinery Technology, 2006(3): 3-6. [13] 尤兵, 李修森. 基于轮毂电机驱动平台的转矩矢量分配技术的研究[J]. 汽车文摘, 2019(1): 1-4. You Bing, Li Xiusen.Research on torque vectoring based on in-wheel-motor driven platform[J]. Auto-motive Digest, 2019(1): 1-4. [14] 黄书荣, 邢栋, 徐伟. 新能源电动汽车用轮毂电机关键技术综述[J]. 新型工业化, 2015, 5(2): 27-32. Huang Shurong, Xing Dong, Xu Wei.Overview of key techniques for in-wheel motors of new energy electrical vehicles[J]. The Journal of New Indu-strialization, 2015, 5(2): 27-32. [15] 马瑞丰. 车用永磁同步轮毂电机电磁设计研究与特性分析[D]. 哈尔滨: 哈尔滨理工大学, 2021. [16] 王迪, 尚秉旭, 陈志新, 等. 轮毂电机及其电动车技术发展综述[J]. 汽车文摘, 2019(11): 40-44. Wang Di, Shang Bingxu, Chen Zhixin, et al.Development review of wheel hub motor and wheel hub motor driven EV[J]. Automotive Digest, 2019(11): 40-44. [17] 曹小华, 魏恒, 王鑫. 考虑温度影响的永磁同步电机参数辨识方法[J]. 华南理工大学学报(自然科学版), 2018, 46(8): 64-71. Cao Xiaohua, Wei Heng, Wang Xin.Parameter identification method of permanent magnet syn-chronous motor considering temperature influence[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(8): 64-71. [18] Song Fan, Tan Di.The advances on the study of heating and cooling issues for in-wheel-motor-driven systems[J]. International Journal of Electric and Hybrid Vehicles, 2017, 9(2): 121. [19] Ren Jiwen, Huang Juanlin, Chen Qiping, et al.Analysis and research of in-wheel motor temperature field for electric vehicles[J]. International Journal of Electric and Hybrid Vehicles, 2018, 10(4): 319. [20] 张立军, 徐杰, 孟德建. 基于Preisach模型的永磁同步轮毂电机损耗及温度场建模与分析[J]. 机械工程学报, 2019, 55(22): 33-40, 51. Zhang Lijun, Xu Jie, Meng Dejian.Modeling and analysis of loss and temperature field in permanent magnet synchronous in-wheel motor based on Preisach theory[J]. Journal of Mechanical Engineering, 2019, 55(22): 33-40, 51. [21] 周志刚, 杨文豪, 孟祥明. 不同冷源轮毂电机多模式切换温度场研究[J]. 湖南大学学报(自然科学版), 2021, 48(8): 51-58. Zhou Zhigang, Yang Wenhao, Meng Xiangming.Research on temperature field of in-wheel motors with different cold sources in multi-mode switching[J]. Journal of Hunan University (Natural Sciences), 2021, 48(8): 51-58. [22] 周志刚, 杨文豪, 李争争, 等. 基于水冷冷却方式的轮毂电机温升对比分析[J]. 重庆理工大学学报(自然科学), 2021, 35(6): 63-72, 208. Zhou Zhigang, Yang Wenhao, Li Zhengzheng, et al.Comparative analysis of temperature rise of in-wheel motor based on water cooling[J]. Journal of Chongqing University of Technology (Natural Science), 2021, 35(6): 63-72, 208. [23] 应红亮, 黄苏融, 张琪, 等. 电动汽车用高性能直驱轮毂电机研制[J]. 机械工程学报, 2019, 55(22): 5-10. Ying Hongliang, Huang Surong, Zhang Qi, et al.Develop of high performance direct-driven in-wheel motor for electric vehicle[J]. Journal of Mechanical Engineering, 2019, 55(22): 5-10. [24] Shawn H, Alan H, David A, et al.Design optimization, development and manufacturing of general motors new battery electric vehicle drive unit (1ET35)[J]. SAE International Journal of Alternative Powertrains, 2014, 3(2): 213-221. [25] Jurkovic S, Rahman K, Bae B, et al.Next generation chevy volt electric machines; design, optimization and control for performance and rare-earth miti-gation[C]//2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 2015: 5219-5226. [26] 陶大军, 潘博, 戈宝军, 等. 石墨烯复合绝缘结构的轮毂电机定子散热能力研究[J]. 电机与控制学报, 2021, 25(6): 91-100. Tao Dajun, Pan Bo, Ge Baojun, et al.Research on heat dissipation capacity of hub motor stator with graphene composite insulation structure[J]. Electric Machines and Control, 2021, 25(6): 91-100. [27] 王立军, 张广强, 李山红, 等. 铁基非晶合金应用于电机铁芯的优势及前景[J]. 金属功能材料, 2010, 17(5): 58-62. Wang Lijun, Zhang Guangqiang, Li Shanhong, et al.Advantages and prospects of Fe-based amorphous alloy materials applied in motor iron core[J]. Metallic Functional Materials, 2010, 17(5): 58-62. [28] 朱健, 曹君慈, 刘瑞芳, 等. 电动汽车用永磁同步电机铁心采用非晶合金与硅钢的性能比较[J]. 电工技术学报, 2018, 33(增刊2): 352-358. Zhu Jian, Cao Junci, Liu Ruifang, et al.Comparative analysis of silicon steel and amorphous on the performance of permanent magnet synchronous motors on electric vehicles[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 352-358. [29] 林鹤云, 阳辉, 黄允凯, 等. 记忆电机的研究综述及最新进展[J]. 中国电机工程学报, 2013, 33(33): 57-67, 8. Lin Heyun, Yang Hui, Huang Yunkai, et al.Overview and recent developments of memory machines[J]. Proceedings of the CSEE, 2013, 33(33): 57-67, 8. [30] Ibrahim M, Masisi L, Pillay P.Design of variable-flux permanent-magnet machines using alnico mag-nets[J]. IEEE Transactions on Industry Applications, 2015, 51(6): 4482-4491. [31] Hua Hao, Zhu Z Q, Pride A, et al.A novel variable flux memory machine with series hybrid magnets[J]. IEEE Transactions on Industry Applications, 2017, 53(5): 4396-4405. [32] Yu Chuang, Chau K T, Jiang J Z.A permanent-magnet flux-mnemonic integrated-starter-generator for hybrid electric vehicles[C]//2008 IEEE Vehicle Power and Propulsion Conference, Harbin, China, 2008: 1-6. [33] Li Wenlong, Lee C H T, Liu Chunhua. A dual-memory permanent magnet brushless machine for automotive integrated starter-generator application[C]// IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, Canada, 2012: 4076-4081. [34] Penzkofer A, Atallah K.Magnetic gears for high torque applications[J]. IEEE Transactions on Mag-netics, 2014, 50(11): 1-4. [35] Montague R, Bingham C, Atallah K.Dual-observer-based position-servo control of a magnetic gear[J]. IET Electric Power Applications, 2011, 5(9): 708-714. [36] 汲柏良, 秦清海. 磁性传动齿轮研究综述[J]. 微特电机, 2022, 50(2): 59-66. Ji Boliang, Qin Qinghai.Review of research on magnetic transmission gear[J]. Small & Special Electrical Machines, 2022, 50(2): 59-66. [37] 黄海林, 李大伟, 曲荣海, 等. 磁齿轮复合永磁电机拓扑及应用综述[J]. 电工技术学报, 2022, 37(6): 1381-1397. Huang Hailin, Li Dawei, Qu Ronghai, et al.A review of magnetic geared machines: topologies and appli-cations[J]. Transactions of China Electrotechnical Society, 2022, 37(6): 1381-1397. [38] 俞东. 永磁游标轮毂电机的设计与研究[D]. 杭州: 浙江大学, 2019. [39] 陈益强. 永磁V型内置式外转子游标电机设计与多目标优化研究[D]. 镇江: 江苏大学, 2019. [40] 刘新波. 混合励磁游标轮毂电机及其控制研究[D]. 镇江: 江苏大学, 2020. [41] 曹恒佩, 艾萌萌, 王延波. 永磁辅助同步磁阻电机研究现状及发展趋势[J]. 电工技术学报, 2022, 37(18): 4575-4592. Cao Hengpei, Ai Mengmeng, Wang Yanbo.Research status and development trend of permanent magnet assisted synchronous reluctance motor[J]. Transa-ctions of China Electrotechnical Society, 2022, 37(18): 4575-4592. [42] 林迎前, 孙毅, 王云冲, 等. 稀土和铁氧体混用永磁辅助同步磁阻电机[J]. 电工技术学报, 2022, 37(5): 1145-1157. Lin Yingqian, Sun Yi, Wang Yunchong, et al.A hybrid PM-assisted SynRM with ferrite and rare-earth magnets[J]. Transactions of China Electrotechnical Society, 2022, 37(5): 1145-1157. [43] 汪雪. 少稀土混合永磁无刷电机的设计与优化研究[D]. 镇江: 江苏大学, 2018. [44] Ishii S, Hasegawa Y, Nakamura K, et al.Characte-ristics of novel flux barrier type outer rotor IPM motor with rare-earth and ferrite magnets[J].Journal of the Magnetics Society of Japan, 2012, 37(3-2): 259-263. [45] Yamada A, Miki I.Novel rotor structure of permanent magnet synchronous motor with rare earth and ferrite magnets[C]//IEEE International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Ischia, Italy, 2014: 1-5. [46] 电动汽车电机5个核心技术需求及案例[J]. 变频器世界, 2018(4): 85-87. [47] Kakihara W, Takemoto M, Ogasawara S.Rotor structure in 50 kW spoke-type interior permanent magnet synchronous motor with ferrite permanent magnets for automotive applications[C]//IEEE Energy Conversion Congress and Exposition, Denver, Co, USA, 2013: 606-613. [48] Obata M, Morimoto S, Sanada M, et al.Performance of PMASynRM with ferrite magnets for EV/HEV applications considering productivity[J]. IEEE Transa-ctions on Industry Applications, 2014, 50(4): 2427-2435. [49] Kim S I, Park S, Park T, et al.Investigation and experimental verification of a novel spoke-type ferrite-magnet motor for electric-vehicle traction drive applications[J]. IEEE Transactions on Industrial Electronics, 2014, 61(10): 5763-5770. [50] Hoang E, Ahmed H, Lucidarme J.Switching flux permanent magnet polyphased synchronous machines[C]// 7th European Conference on Power Electronics and Applications, 1997: 903-908. [51] Evans D J, Zhu Z Q.Novel partitioned stator switched flux permanent magnet machines[J]. IEEE Transa-ctions on Magnetics, 2015, 51(1): 1-14. [52] 朱孝勇, 程明. 定子永磁型混合励磁双凸极电机设计、分析与控制[J]. 中国科学 (技术科学), 2010, 40(9): 1061-1073. Zhu Xiaoyong, Cheng Ming.Design, analysis and control of stator permanent magnet hybrid excitation doubly salient motor[J]. Scientia Sinica (Tech-nologica), 2010, 40(9): 1061-1073. [53] 朱晗, 李光友, 孙雨萍. 磁通反向电机的发展及研究概况[J]. 微特电机, 2010, 38(9): 73-76, 80. Zhu Han, Li Guangyou, Sun Yuping.Development and research profile of flux reversal machines[J]. Small & Special Electrical Machines, 2010, 38(9): 73-76, 80. [54] Ifedi C J, Mecrow B C, Brockway S T M, et al. Fault-tolerant in-wheel motor topologies for high-performance electric vehicles[J]. IEEE Transactions on Industry Applications, 2013, 49(3): 1249-1257. [55] 隋义. 纯电动汽车用五相容错永磁同步电机的关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. [56] 田兵. 五相永磁同步电机驱动系统容错控制技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. [57] 陈前, 夏雨航, 赵文祥, 等. 采用无差拍电流跟踪的五相梯形反电动势永磁电机开路容错控制[J]. 电工技术学报, 2022, 37(2): 368-379. Chen Qian, Xia Yuhang, Zhao Wenxiang, et al.Open-circuit fault-tolerant control for five-phase permanent magnet motors with trapezoidal back-EMF by deadbeat current tracking[J]. Transactions of China Electrotechnical Society, 2022, 37(2): 368-379. [58] 顾理成, 陈前, 赵文祥, 等. 五相永磁容错电机的相间短路容错控制[J]. 电工技术学报, 2022, 37(8): 1972-1981. Gu Licheng, Chen Qian, Zhao Wenxiang, et al.Inter-phase short-circuit fault-tolerant control for five-phase permanent magnet fault-tolerant motors[J]. Transactions of China Electrotechnical Society, 2022, 37(8): 1972-1981. [59] 暴杰, 许重斌, 赵慧超. 汽车电驱动新型轴向磁通电机技术综述[J]. 汽车文摘, 2022(5): 44-48. Bao Jie, Xu Chongbin, Zhao Huichao.Overview of new axial flux motor technologies for automobile electric drive[J]. Automotive Digest, 2022(5): 44-48. [60] 王巍, 宋志环, 陈健, 等. AFIR盘式永磁电机定子系统固有频率及电磁噪声计算[J]. 电机与控制学报, 2009, 13(6): 857-861. Wang Wei, Song Zhihuan, Chen Jian, et al.The calculation of natural frequencies of stator system and electromagnetic acoustic noise of AFIR disc PM machine[J]. Electric Machines and Control, 2009, 13(6): 857-861. [61] 郭建文, 黄苏融, 张琪, 等. 高密度AFIR盘式车轮永磁电机设计[J]. 中小型电机, 2004, 31(6): 19-23. Guo Jianwen, Huang Surong, Zhang Qi, et al.Design of high density AFIR disc wheel-motor[J]. S & M Electric Machines, 2004, 31(6): 19-23. [62] Woolmer T J, McCulloch M D. Analysis of the yokeless and segmented armature machine[C]//2007 IEEE International Electric Machines & Drives Conference, Antalya, Turkey, 2007: 704-708. [63] Wang Xiaoyuan, Zhao Xiaoxiao, Gao Peng, et al.A new parallel magnetic circuit axial flux permanent magnet in-wheel motor[C]//2021 24th International Conference on Electrical Machines and Systems (ICEMS), Gyeongju, Korea, 2021: 1107-1111. [64] Habib A, Zainuria M A A M, Che Hang seng, et al. An appreciation of using Halbach magnets array in axial flux permanent magnet machines[C]//2022 IEEE Industrial Electronics and Applications Conference (IEACon), Kuala Lumpur, Malaysia, 2022: 94-98. [65] Jin Ping, Yuan Yue, Xu Qingyang, et al.Analysis of axial-flux Halbach permanent-magnet machine[J]. IEEE Transactions on Magnetics, 2015, 51(11): 1-4. [66] Zhao Fei, Lipo T A, Kwon B I.A novel dual-stator axial-flux spoke-type permanent magnet vernier machine for direct-drive applications[J]. IEEE Transa-ctions on Magnetics, 2014, 50(11): 1-4. [67] Hao Li, Lin Mingyao, Li Wan, et al.Novel dual-rotor axial field flux-switching permanent magnet machine[J]. IEEE Transactions on Magnetics, 2012, 48(11): 4232-4235. [68] 曹永娟, 冯亮亮, 毛瑞, 等. 轴向磁场永磁记忆电机多目标分层优化设计[J]. 中国电机工程学报, 2021, 41(6): 1983-1991. Cao Yongjuan, Feng Liangliang, Mao Rui, et al.Multi-objective hierarchical optimization design of axial magnetic field permanent magnet memory motor[J]. Proceedings of the CSEE, 2021, 41(6): 1983-1991. [69] Paplicki P, Prajzendanc P.The influence of permanent magnet length and magnet type on flux-control of axial flux hybrid excited electrical machine[C]//2018 14th Selected Issues of Electrical Engineering and Electronics (WZEE), Szczecin, Poland, 2019: 1-4. [70] Zhao Jilong, Lin Mingyao, Xu Da, et al.Vector control of hybrid axial field flux-switching permanent magnet machine based on particle swarm optimi-zation[C]//2015 IEEE International Magnetics Con-ference (INTERMAG), Beijing, China, 2015: 1-4. [71] Zhao Jilong, Quan Xiaowei, Jing Mengdie, et al.Influence of rotor-pole number on electromagnetic performance of novel double-rotor hybrid excited axial switched-flux permanent magnet machines for EV/HEV applications[C]//2018 Asia-Pacific Magnetic Recording Conference (APMRC), Shanghai, China, 2019: 1-2. [72] Yang Y P, Liang Jiayuan, Xing X Y.Design and application of axial-flux permanent magnet wheel motors for an electric vehicle[C]//AFRICON, Nairobi, Kenya, 2009: 1-5. [73] Lu Yang, Li Jian, Lu Hanxiao, et al.Six-phase double-stator inner-rotor axial flux PM machines with novel detached winding[J]. IEEE Transactions on Industry Applications, 2017, 53(3): 1931-1941. [74] Zhao Wenliang, Lipo T A, Kwon B I.A novel dual-rotor, axial field, fault-tolerant flux-switching permanent magnet machine with high-torque perfor-mance[J]. IEEE Transactions on Magnetics, 2015, 51(11): 1-4. [75] Weh H, May H.Achievable force desities for per-manent magnet excited machine in new configu-ration[C]//Proceedings of ICEM, Munchen, Germany, 1986: 1107-1111. [76] 苏士斌. 双六相横向磁通永磁电机系统研究[D]. 西安: 西北工业大学, 2014. [77] 褚文强, 辜承林. 新型横向磁通永磁电机磁场研究[J]. 中国电机工程学报, 2007, 27(24): 58-62. Chu Wenqiang, Gu Chenglin.Study on magnet field of novel transverse-flux permanent magnet machine[J]. Proceedings of the CSEE, 2007, 27(24): 58-62. [78] Ueda Y, Takahashi H, Akiba T, et al.Fundamental design of a consequent-pole transverse-flux motor for direct-drive systems[J]. IEEE Transactions on Mag-netics, 2013, 49(7): 4096-4099. [79] 张文晶, 徐衍亮, 李树才. 新型盘式横向磁通永磁无刷电机的结构原理及设计优化[J]. 电工技术学报, 2021, 36(14): 2979-2988. Zhang Wenjing, Xu Yanliang, Li Shucai.Structure principle and optimization of a novel disk transverse flux permanent magnet brushless motor[J]. Transa-ctions of China Electrotechnical Society, 2021, 36(14): 2979-2988. [80] 徐衍亮, 崔波, 张文晶, 等. 软磁复合材料-Si钢组合铁心盘式横向磁通永磁无刷电机[J]. 电工技术学报, 2020, 35(5): 983-990. Xu Yanliang, Cui Bo, Zhang Wenjing, et al.Disk transverse flux permanent magnet brushless motor based on soft magnetic composite-Si steel core[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 983-990. |
|
|
|