|
|
Lightning Impulse Flashover Performance of Non-Uniform Pollution Insulators |
Jiang Xingliang1, Wang Maozheng1, Yuan Yijun2, Zhang Zhijin1, Chen Yu1 |
1. Xuefeng Mountain Energy Equipment Safety National Observation and Research Station of Chongqing University Chongqing 400044 China; 2. State Grid Hunan Electric Power Company Limited Research Institute Changsha 410007 China |
|
|
Abstract Flashover of pollution insulators is a serious threat to the safe operation of transmission lines, and most existing researches are limited to the AC and DC flashover performance of non-uniform pollution insulators and the lightning impulse flashover performance of uniform pollution insulators. The lightning resistance of pollution insulators is lower than that of clean insulators, and under natural conditions, insulators show non-uniform pollution state, which exacerbates the electric field distortion and has a greater impact on the flashover voltage. To address the shortcomings of existing researches, this paper carries out lightning impulse flashover tests on 7 pieces of XP-70 and LXY-70 suspension insulators with non-uniform pollution top and bottom surfaces after preloading AC voltage in Xuefeng Mountain Energy Equipment Safety National Observation and Research Station of Chongqing University. Firstly, the inert and conductive components of pollution are simulated using diatomaceous earth and sodium chloride, and the ratio of non-soluble deposit density (NSDD) to equivalent salt deposit density (ESDD) on the surface of insulators is maintained at 6. The top and bottom surfaces of insulators are coated separately using a quantitative painting method, and different non-uniform pollution accumulation ratios (T/B) are simulated by keeping the total amount of sodium chloride on the surface of insulators constant and only changing the salt density ratio on the top and bottom surfaces of insulators. After the test arrangements are complete, the lightning impulse circuit switch is disconnected, and the AC circuit switch is closed and preloading AC 70 kV voltage to insulators. After 3 minutes of preloading AC voltage, the AC circuit switch is disconnected and the lightning impulse circuit switch is immediately closed. The up and down method is used as the test voltage addition method, and the voltage step is set at about 3% of the expected lightning impulse flashover voltage U50% and 20 valid tests are conducted on the same sample. The results show a very obvious polarity effect and a polarity reversal phenomenon. When the T/B is 1:1, the negative polarity lightning impulse flashover voltage of insulators is higher than the positive polarity lightning impulse flashover voltage; when the T/B is 1:8 and 1:15, the positive polarity lightning impulse flashover voltage of insulators is higher than the negative polarity lightning impulse flashover voltage. At the same value of ESDD, as T/B decreases, the leakage current under preloading AC voltage is also reduced, while the lightning impulse flashover voltage of insulators shows an increasing trend, and the positive polarity lightning impulse flashover voltage of insulators increases more than the negative polarity lightning impulse flashover voltage. In addition, an ultra-high speed camera with an exposure time of 10 μs, a frame rate of 90 000 and an exposure of 5 is used to film the flashover process of the XP-70 insulators at an ESDD of 0.08 mg/cm2 and a T/B of 1:8. The filmed flashover process shows that many discontinuous local arcs exist on the surface of insulators before flashover and the discontinuous local arcs are all formed on the bottom surface of insulators. As time progresses, the stable local arcs develop rapidly along the surface of insulators and eventually lead to a flashover. Finally, according to the form of lightning impulse flashover of non-uniform pollution insulators, the equations of lightning impulse flashover voltage gradient for ordinary porcelain and glass suspension insulators are established and verified, with the verification results showing that the relative errors between the calculated values and the test values of XP-100, XP-120, LXY-100 and LXY-120 insulators are within ±6.56%.
|
Received: 29 August 2022
|
|
|
|
|
[1] 律方成, 牛雷雷, 王胜辉, 等. 基于优化YOLOv4的主要电气设备智能检测及调参策略[J]. 电工技术学报, 2021, 36(22): 4837-4848. Lü Fangcheng, Niu Leilei, Wang Shenghui, et al.Intelligent detection and parameter adjustment strategy of major electrical equipment based on optimized YOLOv4[J]. Transactions of China Electrotechnical Society, 2021, 36(22): 4837-4848. [2] 陈兴新, 岳一石, 程紫熠, 等. 基于XGBoost算法的绝缘子污秽放电在线诊断方法研究[J]. 湖南电力, 2021, 41(2): 36-40. Chen Xingxin, Yue Yishi, Cheng Ziyi, et al.Research on online diagnosis method of insulator pollution discharge based on XGBoost algorithm[J]. Hunan Electric Power, 2021, 41(2): 36-40. [3] 吕玉坤, 宋庆壮, 王召鹏, 等. 低风速环境下XSP-160型瓷三伞绝缘子积污特性数值模拟[J]. 电工技术学报, 2020, 35(10): 2257-2265. Lü Yukun, Song Qingzhuang, Wang Zhaopeng, et al.Simulation of fouling characteristics of XSP-160 porcelain three umbrella insulators under low wind speed[J]. Transactions of China Electrotechnical Society, 2020, 35(10): 2257-2265. [4] 张志劲, 卢炳宏, 傅海涛, 等. 基于XP-160污秽体积分数的绝缘子积污表征[J]. 电网技术, 2021, 45(9): 3737-3744. Zhang Zhijin, Lu Binghong, Fu Haitao, et al.Characterization of insulator contamination based on XP-160 pollution volume fraction[J]. Power System Technology, 2021, 45(9): 3737-3744. [5] 唐姣. 特高压直流输电线路耐雷性能的仿真计算研究[D]. 长沙: 长沙理工大学, 2021. [6] 舒立春, 袁前飞, 蒋兴良, 等. 低气压下绝缘子雷电冲击的污闪特性[J]. 高电压技术, 2010, 36(6): 1347-1352. Shu Lichun, Yuan Qianfei, Jiang Xingliang, et al.Insulator pollution flashover characteristic under low air pressure caused by lightning surge[J]. High Voltage Engineering, 2010, 36(6): 1347-1352. [7] 杨富淇. 重庆地区绝缘子不均匀积污特性及其对交流闪络电压影响研究[D]. 重庆: 重庆大学, 2020. [8] Zhang Zhijin, Liu Xiaohuan, Jiang Xingliang, et al.Study on AC flashover performance for different types of porcelain and glass insulators with non-uniform pollution[J]. IEEE Transactions on Power Delivery, 2013, 28(3): 1691-1698. [9] Sima Wenxia, Yuan Tao, Yang Qing, et al.Effect of non-uniform pollution on the withstand characteristics of extra high voltage (EHV) suspension ceramic insulator string[J]. IET Generation, Transmission & Distribution, 2010, 4(3): 445. [10] Schneider H M, Zaffanella L E.HVDC transmission line insulator performance[R]. Lenox: General Electric Co., 1986. [11] 黄文武, 文习山, 胡广生, 等. 人工污秽绝缘子工频下叠加雷电冲击的闪络特性研究[J]. 高压电器, 2005, 41(1): 24-25, 28. Huang Wenwu, Wen Xishan, Hu Guangsheng, et al.Study of flashover characteristics of artificial contaminated insulator under lightning impulse voltage superimposed on power frequency voltage[J]. High Voltage Apparatus, 2005, 41(1): 24-25, 28. [12] 张小福. 工频电压对污秽玻璃绝缘子冲击闪络特性影响的研究[D]. 武汉: 华中科技大学, 2013. [13] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 高电压试验技术第1部分:一般定义及试验要求: GB/T 16927.1—2011[S]. 北京: 中国标准出版社, 2012. [14] International Electrotechnical Commission.Artificial pollution tests on high-voltage ceramic and glass insulators to be used on a.c. systems: IEC 60507: 2013[S]. IEC, 2013. [15] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 交流系统用高压绝缘子的人工污秽试验: GB/T 4585—2004 [S]. 北京: 中国标准出版社, 2005. [16] Qiao Xinhan, Zhang Zhijin, Jiang Xingliang, et al.AC failure voltage of iced and contaminated composite insulators in different natural environments[J]. International Journal of Electrical Power & Energy Systems, 2020, 120: 105993. [17] Power systems instrumentation and measurement committee of the IEEE power engineering society. Amendment to IEEE standard techniques for high-voltage testing: IEEE 4a-2001[S]. IEEE, 2001. [18] 张志劲, 向缨竹, 乔新涵, 等. 扇形不均匀污染支柱绝缘子的交流闪络特性[J]. 中国电机工程学报, 2019, 39(24): 7385-7393, 7511. Zhang Zhijin, Xiang Yingzhu, Qiao Xinhan, et al.AC flashover performance of post insulator with fan-shaped non-uniform pollution[J]. Proceedings of the CSEE, 2019, 39(24): 7385-7393, 7511. [19] 蒋兴良, 舒立春, 孙才新. 电力系统污秽与覆冰绝缘[M]. 北京: 中国电力出版社, 2009. [20] 郑忠波, 陈楠, 李志闯, 等. 操作冲击电压下C4F7N/CO2混合气体252 kV GIL间隙及沿面放电特性[J]. 电工技术学报, 2021, 36(14): 3055-3062. Zheng Zhongbo, Chen Nan, Li Zhichuang, et al.Discharge characteristics of 252kV gas insulated transmission line under switching impulse voltage in C4F7N/CO2 mixtures[J]. Transactions of China Electrotechnical Society, 2021, 36(14): 3055-3062. [21] 蒋兴良, 邹佳玉, 韩兴波, 等. 自然环境绝缘子长串覆冰直流闪络特性[J]. 电工技术学报, 2020, 35(12): 2662-2671. Jiang Xingliang, Zou Jiayu, Han Xingbo, et al.DC flashover characteristics of natural environment insulators covered with ice[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2662-2671. [22] 蒋兴良, 任晓东, 韩兴波, 等. 不同布置方式对交流绝缘子串人工污秽闪络特性的影响[J]. 电工技术学报, 2020, 35(4): 896-905. Jiang Xingliang, Ren Xiaodong, Han Xingbo, et al.Influence of different layout methods on artificial pollution flashover characteristics of AC insulator strings[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 896-905. [23] 周卫华, 蒋兴良. 输电线路绝缘子冰闪防治措施的研究[J]. 湖南电力, 2008, 28(1): 1-5. Zhou Weihua, Jiang Xingliang.Research on preventing icing flashover on transmission line insulators[J]. Hunan Electric Power, 2008, 28(1): 1-5. [24] 舒立春, 刘延庆, 蒋兴良, 等. 盘型悬式绝缘子串自然覆冰直流放电发展路径特点及影响因素分析[J]. 电工技术学报, 2021, 36(8): 1726-1733. Shu Lichun, Liu Yanqing, Jiang Xingliang, et al.Analysis on the DC discharge path of ice-covered disc type suspension insulators under natural conditions[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1726-1733. [25] 司马文霞, 徐康, 杨庆, 等. 气压和污秽不均匀度对染污绝缘子泄漏电流的影响[J]. 高电压技术, 2012, 38(3): 663-670. Sima Wenxia, Xu Kang, Yang Qing, et al.Influence of air pressure and non-uniform pollution on the leakage current of insulator[J]. High Voltage Engineering, 2012, 38(3): 663-670. [26] 张垭琦. 基于放电光强及光谱时空分布的1m间隙雷电冲击放电机理及应用研究[D]. 广州: 华南理工大学, 2020. |
|
|
|