[1] 金亮, 王飞, 杨庆新, 等. 永磁同步电机性能分析的典型深度学习模型与训练方法[J]. 电工技术学报, 2018, 33(S1): 41-48.
Jin Liang, Wang Fei, Yang Qingxin, et al.Typical deep learning model and training method for performance analysis of permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2018, 33(S1): 41-48.
[2] 杨帆, 吴涛, 廖瑞金, 等. 数字孪生在电力装备领域中的应用与实现方法[J]. 高电压技术, 2021, 47(05): 1505-1521.
Yang Fan, Wu Tao, Liao Ruijin, et al.Application and implementation of digital twins in the field of electric equipment[J]. High Voltage Engineering, 2021, 47(05): 1505-1521.
[3] Zheng Weiying, Cheng Zhiguang.An inner-constrained separation technique for 3-D finite-element modeling of grain-oriented silicon steel laminations[J]. IEEE Transactions on Magnetics, 2012,48(8):2277-2283.
[4] Silver D, Huang A, Maddison C J, et al.Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489.
[5] Silver D, Schrittwieser J, Simonyan K, et al.Mastering the game of Go without human knowledge[J]. Nature, 2017, 550(7676): 354-359.
[6] 卢锦玲, 郭鲁豫. 基于改进深度残差收缩网络的电力系统暂态稳定评估[J]. 电工技术学报, 2021, 36(11): 2233-2244.
Lu Jinling, Guo Luyu.Power system transient stability assessment based on improved deep residual shrinkage network[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2233-2244.
[7] 张翼, 朱永利. 结合知识蒸馏和图神经网络的局部放电增量识别方法[J]. 电工技术学报, 2023, 38(5): 1390-1400.
Zhang Yi, Zhu Yongli.Partial discharge incremental recognition method combining knowledge distillation and graph neural network[J]. Transactions of China Electrotechnical Society, 2023, 38(5): 1390-1400.
[8] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[9] 徐建军, 黄立达, 闫丽梅, 等. 基于层次多任务深度学习的绝缘子自爆缺陷检测[J]. 电工技术学报, 2021, 36(7): 1407-1415.
Xu Jianjun, Huang Lida, Yan Limei, et al.Detection of insulator self explosion defects based on hierarchical multi task deep learning[J]. Transactions of China Electrotechnical Society, 2021, 36(7): 1407-1415.
[10] Krizhevsky A, Sutskever I, Hinton G.Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017,60(6):84-90.
[11] Hinton G, Deng Li, Yu Dong, et al.Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012,29(6):82-97.
[12] Long J, Shelhamer E, Darrell T.Fully Convolutional Networks for Semantic Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,39(4):640-651.
[13] Ronneberger O, Fischer P, Brox T.U-Net: convolutional networks for biomedical image segmentation[C]// 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2015.
[14] He Kaiming, Zhang Xianyu, Ren Shaoqing, et al.Deep residual learning for image recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
[15] Zhang Zhengxin, Liu Qingjie, Wang Yunhong.Road extraction by deep residual U-net[J]. IEEE Geoscience and Remote Sensing Letters, 2018,15(5):749-753.
[16] 徐宏伟, 闫培新, 吴敏, 等. 基于残差双注意力U-Net模型的CT图像囊肿肾脏自动分割[J]. 计算机应用研究, 2020, 37(7): 2237-2240.
Xu Hongwei, Yan Peixin, Wu Min, et al.Automated segmentation of cystic kidney in CT images using residual double attention motivated U-Net model.[J]. Application Research of Computers, 2020, 37(7): 2237-2240.
[17] 李耀仟, 李才子, 刘瑞强, 等. 面向手术器械语义分割的半监督时空Transformer网络[J]. 软件学报, 2022, 33(4): 1501-1515.
Li Yaoqian, Li Caizi, Liu Ruiqiang, et al.Semi-supervised spatiotemporal transformer network for semantic segmentation of surgical instruments[J]. Journal of Software, 2022, 33(4): 1501-1515.
[18] Vaswani A, Shazeer N, Parmar N, et al. Attention Is All You Need[J]. arXiv:1706.03762v5, 2017.
[19] Dosovitskiy A, Beyer L, Kolesnikov A, et al.An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale[J]. arXiv:2010.11929, 2020.
[20] Chen Jieneng, Lu Yongyi, Yu Qihang, et al.TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation[J]. arXiv:2102.04306, 2021.
[21] Saakaar B, Yaser A, Shaowu P, et al.Deep learning for magnetic field estimation[J]. IEEE Transactions on Magnetics, 2019,55(6):1-4.
[22] Gong Ruohai, Tang Zuqi.Investigation of convolutional neural network U-net under small datasets in transformer magneto-thermal coupled analysis[J]. COMPEL: The international journal for computation and mathematics in electrical and electronic engineering, 2020,39(4):959-970.
[23] Li Y, Wang Y, Qi S, et al.Predicting scattering from complex nano-structures via deep learning[J]. IEEE Access, 2020,8:139983-139993.
[24] 吴鑫, 张艳丽, 王振, 等. 基于深度学习的电工钢片磁畴磁化过程预测与特征量提取[J]. 电工技术学报, 2023, 38(9): 2289-2298.
Wu Xin, Zhang Yanli, Wang Zhen, et al.Prediction of domain magnetization process and feature extraction of Electrical steel sheet based on deep learning[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2289-2298.
[25] Xiaowei J, Cheng Peng, Chen Wenli, et al.Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder[J]. Physics of Fluids, 2018,4(30):1-16.
[26] Vinothkumar S, Qinghua J, Chang S, et al.Fast flow field prediction over airfoils using deep learning approach[J]. Physics of Fluids, 2019,31(5):1-69.
[27] Liu Bo, Tang Jiupeng, Huang Haibo, et al.Deep learning methods for super-resolution reconstruction of turbulent flows[J]. Physics of Fluids, 2020, 32(2): 1-13.
[28] Bhatnagar, Saakaar, Afshar, et al. Prediction of aerodynamic flow fields using convolutional neural networks[J]. Computational Mechanics, 2019, 64(2): 525-545.
[29] 殷晓航, 王永才, 李德英. 基于U-Net结构改进的医学影像分割技术综述[J]. 软件学报, 2021, 32(2): 519-550.
Yin Xiaohang, Wang Yongcai, Li Deying.Summary of medical image segmentation technology based on U-Net structure improvement[J]. Journal of Software, 2021, 32(2): 519-550.
[30] Liu Zhenqing, Cao Yiwen, Wang Yize, et al.Computer vision-based concrete crack detection using U-net fully convolutional networks[J]. Automation in Construction, 2019, 104: 129-139.
[31] Ibtehaz N, Rahman M S.MultiResUNet : Rethinking the U-Net architecture for multimodal biomedical image segmentation[J]. Neural Networks, 2020,121:74-87.
[32] Hochreiter S, Schmidhuber J.Long Short-Term Memory[J]. Neural Computation, 1997,9(8):1735-1780.
[33] Li Chen, Tan Yusong, Chen Wei, et al.ANU-Net: attention-based nested U-Net to exploit full resolution features for medical image segmentation[J]. Computers & Graphics, 2020, 90: 11-20.
[34] 房佳姝, 刘崇茹, 苏晨博, 等. 基于自注意力Transformer编码器的多阶段电力系统暂态稳定评估方法[J]. 中国电机工程学报, 2022: 1-13.
Fang Jiashu, Liu Chongru, Su Chenbo, et al.Multi-stage power system transient stability assessment method based on self-attention transformer encoder[J]. Proceedings of the CSEE, 2022: 1-13.
[35] Ayers C W, Hsu J S, Marlino L D, et al.Evaluation of 2004 Toyota Prius Hybrid Electic Drive System Interim Report[R]. Oak Ridge National Laboratory, 2004.
[36] Burress T A, Campbell S L, Coomer C, et al.Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System[R]. Oak Ridge National Laboratory, 2011.
[37] 余光正, 陆柳, 汤波, 等. 基于云图特征提取的改进混合神经网络超短期光伏功率预测方法[J]. 中国电机工程学报, 2021, 41(20): 6989-7003.
Yu Guangzheng, Lu Liu, Tang Bo, et al.Improved hybrid neural network ultra-short term photovoltaic power prediction method based on cloud image feature extraction[J]. Proceedings of the CSEE, 2021, 41(20): 6989-7003.
[38] 余印振, 韩哲哲, 许传龙. 基于深度卷积神经网络和支持向量机的NO_x浓度预测[J]. 中国电机工程学报, 2022, 42(01): 238-248.
Yu Yinzhen, Han Zhezhe, Xu Chuanlong.The concentration prediction of No_x based on deep convolution neural network and support vector machine[J]. Proceedings of the CSEE, 2022, 42(01): 238-248.
[39] 朱煜峰, 许永鹏, 陈孝信, 等. 基于卷积神经网络的直流XLPE电缆局部放电模式识别技术[J]. 电工技术学报, 2020, 35(3): 659-668.
Zhu Yufeng, Xu Yongpeng, Chen Xiaoxin, et al.Partial discharge pattern recognition technology of DC XLPE cable based on convolution neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 659-668. |