[1] 刘大同, 周建宝, 郭力萌, 等. 锂离子电池健康评估和寿命预测综述[J]. 仪器仪表学报, 2015, 36(1): 1-16.
Liu Datong, Zhou Jianbao, Guo Limeng, et al.Survey on lithium-ion battery health assessment and cycle life estimation[J]. Chinese Journal of Scientific Instrument, 2015, 36(1): 1-16.
[2] 林娅, 陈则王. 锂离子电池剩余寿命预测研究综述[J]. 电子测量技术, 2018, 41(4): 29-35.
Lin Ya, Chen Zewang.Review of remaining life prediction for lithium-ion batteries[J]. Electronic Measurement Technology, 2018, 41(4): 29-35.
[3] 王其钰, 王朔, 张杰男, 等. 锂离子电池失效分析概述[J].储能科学与技术, 2017, 6(5): 1008-1025.
Wang Qiyu, Wang Shuo, Zhang Jienan, et al.Overview of the failure analysis of lithium ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 1008-1025.
[4] 王义军,左雪.锂离子电池荷电状态估算方法及其应用场景综述[J].电力系统自动化,2022,46(14):193-207.
Wang Yijun, Zuo Xue.Review on estimation methods for state of charge of lithium-ion battery and their application scenarios[J].Automation of Electric Power Systems, 2022,46(14):193-207.
[5] Fotouhi A, Auger D J, Propp K, et al.Lithium-sulfur battery state-of-charge observability analysis and estimation[J].IEEE Transactions on Power Electronics, 2017, 33(7): 5847-5859.
[6] 陈霖华,陈剑,徐志强等.基于实时电路模型的储能系统锂离子电池状态估算[J].中南大学学报(自然科学版),2021,52(02):458-464.
Chen Linhua, Chen Jian, Xu Zhiqiang, et al.State estimation of lithium ion battery in energy storage system based on real time circuit model[J]. Journal of Central South University(Science and Technology),2021,52(2):458-464.
[7] Spotnitz R.Simulation of capacity fade in lithium-ion batteries[J]. Journal of Power Sources, 2003, 113(1):72-80.
[8] Jürgen Remmlinger a, A M B, B M M, et al. State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation-ScienceDirect[J]. Journal of Power Sources, 2011, 196(12):5357-5363.
[9] Sun Yuhua, Jou H L, Wu J C.Auxiliary diagnosis method for lead-acid battery health based on sample entropy[J]. Energy Conversion & Management, 2009, 50(9):2250-2256.
[10] BirklC.Oxford battery degradation dataset 1[DB]. Univ. Oxford,Oxford,UK,2017.
[11] BoleB, KulkarniC, Daigle M. "Randomized Battery Usage Data Set", NASA Prognostics Data Repository, NASA Ames Research Center, Moffett Field, CA.
[12] Abu-Sharkh S, Doerffel D.Rapid test and non-linear model characterisation of solid-state lithium-ion batteries[J].Journal of Power Sources, 2004, 130(1/2):266-274.
[13] 程泽,杨磊,孙幸勉.基于自适应平方根无迹卡尔曼滤波算法的锂离子电池SOC和SOH估计[J].中国电机工程学报, 2018, 38(8): 2384-2393, 2548.
Cheng Ze, Yang Lei, Sun Xingmian. State of charge and state of health estimation of li-ion batteries based on adaptive square-root unscented Kalman filters[J]. Proceedings of the CSEE, 2018, 38(8): 2384-2393, +2548.
[14] 朱丽群,张建秋.一种联合锂电池健康和荷电状态的新模型[J].中国电机工程学报,2018,38(12):3613-3620+21.
Zhu Liqun, Zhang Jianqiu. A New Model of Jointed States of Charge and Health for Lithium Batteries[J]. Proceedings of the CSEE,2018,38(12):3613-3620+21.
[15] 巫春玲,胡雯博,孟锦豪,等.基于最大相关熵扩展卡尔曼滤波算法的锂离子电池荷电状态估计[J].电工技术学报,2021,36(24):5165-5175.
Wu Chunling, Hu Wenbo, Meng Jinhao, et al.State of charge estimation of lithium-ion batteries based on maximum correlation-entropy criterion extended Kalman filtering algorithm[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5165-5175.
[16] 王萍,范凌峰,程泽.基于健康特征参数的锂离子电池SOH和RUL联合估计方法[J].中国电机工程学报,2022,42(4):1523-1534.
Wang Ping, Fan Lingfeng, Cheng Ze.A joint state of health and remaining useful life estimation approach for lithium-ion batteries based on Health factor parameter[J]. Proceedings of the CSEE,2022,42(4):1523-1534.
[17] 王萍, 弓清瑞, 张吉昂,等.一种基于数据驱动与经验模型组合的锂电池在线健康状态预测方法[J].电工技术学报, 2021, 36(24): 5201-5212.
Wang Ping, Gong Qingrui, Zhang Ji'ang, et al.An online state of health prediction method for lithium batteries based on combination of data-driven and empirical model[J]. Transactions of China Electrotechnical Society,2021,36(24):5201-5212.
[18] 孙金磊, 唐传雨, 李磊, 等. 基于状态与模型参数联合估计的老化电池可充入电量估计方法[J].电工技术学报, 2022, 37(22):5886-5898.
Sun Jinlei, Tang Chuanyu, Li Lei, et al.An estimation method of rechargeable electric quantity for aging battery based on joint estimation of state and model parameters[J]. Transactions of China Electrotechnical Society, 2022, 37(22): 5886-5898.
[19] Liu Datong, Zhou Jianbao, Liao Haitao, et al.A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2015, 45(6): 915-928.
[20] Li Xiaoyu, Wang Zhenpo, Yan Jinying.Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression[J]. Journal of power sources, 2019, 421(MAY 1):56-67.
[21] Wang Haiyang, Song Wanqing, Zio E, et al.Remaining useful life prediction for lithium-ion batteries using fractional brownian motion and fruit-fly optimization algorithm[J]. Measurement, 2020, 161:107904.
[22] 徐佳宁,倪裕隆,朱春波.基于改进支持向量回归的锂电池剩余寿命预测[J].电工技术学报, 2021, 36(17): 3693-3704.
Xu Jianing, Ni Yulong, Zhu Chunbo.Remaining useful life prediction for lithium-ion batteries based on improved support vector regression[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3693-3704.
[23] 周才杰,汪玉洁,李凯铨,等.基于灰色关联度分析-长短期记忆神经网络的锂离子电池健康状态估计[J].电工技术学报, 2022, 37(23): 6065-6073.
Zhou Caijie, Wang Yujie, Li Kaiquan, et al.State of health estimation for lithium-ion battery based on gray correlation analysis and long short-term memory neural network[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 6065-6073. |