|
|
Research Progress of Nonlinear Conductive Materials for Electrical Insulation |
Meng Zhaotong, Zhang Tiandong, Zhang Changhai, Chi Qingguo |
School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin 150080 China |
|
|
Abstract The electric field control of insulating devices for high-voltage systems has been widely concerned, and engineering efforts are devoted to achieving the lowest possible electric field strength at a fixed system voltage, and to achieve as uniform electric field distribution as possible. Polymer materials with nonlinear conductance properties are widely used to solve the problem of electric field concentration, for example, to achieve electrical stress control of components such as cable accessory insulation, high-voltage rotating electrical machine stator system insulation, and high-power insulated gate bipolar transistors. In this paper, the method of homogenizing electric field in the application of electrical devices is introduced from two aspects of geometric stress control and nonlinear stress control. The nonlinear conductivity characteristics of inorganic fillers such as zinc oxide and silicon carbide and the formation mechanism of nonlinear conductivity of polymer matrix composites are introduced in detail. Based on the theory of percolation and interfacial conduction, the effect of doped filler content on nonlinear electrical conductivity was expounded. Taking the contact resistance of doped fillers, the number of contact interfaces, and the number of grain boundaries as the starting point, the influence mechanism of filler morphology and size on the carrier transport of nonlinear conductive composites was summarized. The application and performance control mechanism of multi-dimensional filler co-mixing and filler surface modification in the field of nonlinear conductivity materials are introduced, and the research results of nonlinear conductivity materials in high-pressure applications are summarized. It is also pointed out that the modified composite materials have complex structures and limited application in many cases, and the carrier transport mechanism has not been unified yet, so further research is still needed. The main conclusion of this paper is that the filler content in the composite has a certain impact on the formation of the nonlinear conductive seepage path, the injection of carriers and the interface effect between the filler and the matrix, thus affecting the difficulty of forming the nonlinear conductive characteristics of the composite. The influence of filler morphology mainly depends on the contact resistance between fillers. Filler size mainly affects the probability of carrier conduction path formation and is also related to interface resistance. The influence of grain size can affect the contact voltage through the number of filler contact interfaces. The filler co doping mainly regulates the difficulty of forming the conductive network structure, and the introduction of metal elements can dramatically increase the number of carriers. The surface of fillers can improve the dispersion of fillers in the matrix, thus enhancing the interaction between polymers and fillers. However, there is still no unified understanding of the influence of filler dispersion on the nonlinear electrical characteristics of composites. Nonlinear conductive materials can effectively control the electric field distribution of IGBT, GIS, cable accessories and other components, and provide guarantee for the safe operation of electrical insulation devices. It is pointed out that a lot of research is needed to broaden the range of preparation methods that can be used to synthesize nonlinear conductive composites, and improve the tensile strength and toughness of the materials. Surface modification of fillers is another relatively new research field. It can achieve uniform dispersion of high content nano fillers in polymer matrix, which is a direction that can be further studied. Polymer grafting is also an area of future research. In short, the excellent characteristics and high efficiency of emerging methods will promote the upgrading of domestic related technologies and industrial development.
|
Received: 22 July 2022
|
|
|
|
|
[1] 陈杰, 吴世林, 胡丽斌, 等. 退役高压电缆附件绝缘状态及理化性能分析[J]. 电工技术学报, 2021, 36(12): 2650-2658. Chen Jie, Wu Shilin, Hu Libin, et al.Analysis of insulation state and physicochemical property of retired high-voltage cable accessories[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2650-2658. [2] Sumereder C.Statistical lifetime of hydro generators and failure analysis[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(3): 678-685. [3] Zhou Haolong, Hanafusa W, Udo K, et al.Aging behavior of flame-retardant cross-linked polyolefin under thermal and radiation stresses[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(1): 303-309. [4] 王孟夏, 周生远, 杨明, 等. 计及海底电缆热特性的可接纳海上风电装机容量评估方法[J]. 电力系统自动化, 2021, 45(6): 195-202. Wang Mengxia, Zhou Shengyuan, Yang Ming, et al.Assessment method for acceptable installed capacity of offshore wind farms considering thermal characteristics of submarine cables[J]. Automation of Electric Power Systems, 2021, 45(6): 195-202. [5] Liu A Y H, Rottler J. Physical aging and structural relaxation in polymer nanocomposites[J]. Journal of Polymer Science Part B: Polymer Physics, 2009, 47(18): 1789-1798. [6] Tan D.Structured microgrids (SμGs) and flexible electronic large power transformers (FeLPTs)[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(4): 255-263. [7] Pleşa I, Noţingher P V, Stancu C, et al.Polyethylene nanocomposites for power cable insulations[J]. Polymers, 2018, 11(1): 24. [8] Wu Kai, Su Rui, Wang Xia.Space charge behavior in polymeric materials under temperature gradient[J]. IEEE Electrical Insulation Magazine, 2020, 36(2): 37-49. [9] Andersson M G, Hynynen J, Andersson M R, et al.Highly insulating polyethylene blends for high-voltage direct-current power cables[J]. ACS Macro Letters, 2017, 6(2): 78-82. [10] Li Yuan, Zhu Guangya, Zhou Kai, et al.Evaluation of graphene/crosslinked polyethylene for potential high voltage direct current cable insulation applications[J]. Scientific Reports, 2021, 11: 18139. [11] Paramane A, Chen Xiangrong, Dai Chao, et al.Electrical insulation performance of cross-linked polyethylene/MgO nanocomposite material for ±320 kV high-voltage direct-current cables[J]. Polymer Composites, 2020, 41(5): 1936-1949. [12] Ye Hanyu, Fechner T, Lei Xianzhang, et al.Review on HVDC cable terminations[J]. High Voltage, 2018, 3(2): 79-89. [13] 刘彬, 马骏逸. 中压电缆附件电场应力控制的发展[J]. 工业设计, 2011(6): 204, 206. [14] Andraschek N, Wanner A J, Ebner C, et al.Mica/epoxy-composites in the electrical industry: applications, composites for insulation, and investigations on failure mechanisms for prospective optimizations[J]. Polymers, 2016, 8(5): 201. [15] Wang Peng, Hui Suxin, Akram S, et al.Influence of repetitive square voltage duty cycle on the electrical tree characteristics of epoxy resin[J]. Polymers, 2020, 12(10): 2215. [16] Dabbak S Z, Illias H A, Ang B C.Effect of surface discharges on different polymer dielectric materials under high field stress[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(6): 3758-3765. [17] 丁雪妮, 陈民铀, 赖伟, 等. 多芯片并联IGBT模块老化特征参量甄选研究[J]. 电工技术学报, 2022, 37(13): 3304-3316, 3340. Ding Xueni, Chen Minyou, Lai Wei, et al.Selection of aging characteristic parameter for multi-chips parallel IGBT module[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3304-3316, 3340. [18] Hirao K, Zhou You, Hyuga H, et al.Evaluation of thermal resistance for metalized ceramic substrates using a microheater chip[J]. International Journal of Applied Ceramic Technology, 2022, 19(1): 232-240. [19] Yu Jingzhe, Chen Xiangrong, Zhou Hao.Electric field calculation and optimization for stress cone of DC cable joint based on the coaxial double-layer insulation model[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(1): 33-41. [20] Abd-Rahman R, Haddad A, Harid N, et al.Stress control on polymeric outdoor insulators using Zinc oxide microvaristor composites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(2): 705-713. [21] Eigner A, Semino S.50 years of electrical-stress control in cable accessories[J]. IEEE Electrical Insulation Magazine, 2013, 29(5): 47-55. [22] 孙中玉, 徐丙垠, 王玮, 等. 电缆故障脉冲电流测距系统建模与仿真[J]. 电力系统自动化, 2021, 45(4): 142-147. Sun Zhongyu, Xu Bingyin, Wang Wei, et al.Modeling and simulation of cable fault location system based on pulse current[J]. Automation of Electric Power Systems, 2021, 45(4): 142-147. [23] Lupo G, Miano G, Tucci V, et al.Field distribution in cable terminations from a quasi-static approximation of the Maxwell equations[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1996, 3(3): 399-409. [24] Yang Xiao, Hu Jun, Chen Shuiming, et al.Understanding the percolation characteristics of nonlinear composite dielectrics[J]. Scientific Reports, 2016, 6: 30597. [25] Tavernier K, Varlow B R, Auckland D W, et al.Improvement in electrical insulators by nonlinear fillers[J]. IEE Proceedings - Science, Measurement and Technology, 1999, 146(2): 88. [26] Yin Yi, Chen Jiong, Li Zhe, et al.High field conduction of the composites of low-density polyethylene/nano SiOx and low-density polyethylene/ micrometer SiO2[C]//Proceedings of 2005 International Symposium on Electrical Insulating Materials, Kitakyushu, Japan, 2005: 405-408. [27] Tang Hao, Chen Xinfang, Tang Aoqing, et al.Studies on the electrical conductivity of carbon black filled polymers[J]. Journal of Applied Polymer Science, 1996, 59(3): 383-387. [28] Han Peng, Zha Junwei, Wang Sijiao, et al.Theoretical analysis and application of polymer-matrix field grading materials in HVDC cable terminals[J]. High Voltage, 2017, 2(1): 39-46. [29] 尚南强, 陈庆国, 秦君. 纳米TiO2/液体硅橡胶直流电缆附件绝缘复合材料的介电性能[J]. 复合材料学报, 2019, 36(1): 104-113. Shang Nanqiang, Chen Qingguo, Qin Jun.Dielectric properties of nano TiO2/liquid silicone rubber composites for direct current cable accessories insulation[J]. Acta Materiae Compositae Sinica, 2019, 36(1): 104-113. [30] Liu Jingyi, Li Zhonghua, Han Yongsen, et al.Study on polarization and depolarization characteristics of epoxy/BaTiO3 nano-composites[C]//2019 2nd International Conference on Electrical Materials and Power Equipment (ICEMPE), Guangzhou, China, 2019: 305-308. [31] Vu T T N, Teyssedre G, Vissouvanadin B, et al. Correlating conductivity and space charge measurements in multi-dielectrics under various electrical and thermal stresses[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(1): 117-127. [32] 迟庆国, 崔爽, 张天栋, 等. 碳化硅晶须/环氧树脂复合介质非线性电导特性研究[J]. 电工技术学报, 2020, 35(20): 4405-4414. Chi Qingguo, Cui Shuang, Zhang Tiandong, et al.Study on nonlinear characteristics on conductivity of silicon carbide whisker/epoxy resin composites[J]. Transactions of China Electrotechnical Society, 2020, 35(20): 4405-4414. [33] 张宇轩, 李禾, 王闯, 等. 混酸功能化方法对碳纳米管/环氧树脂复合材料电导性能的影响[J]. 绝缘材料, 2017, 50(1): 23-27. Zhang Yuxuan, Li He, Wang Chuang, et al.Effects of mixed acid functionalization on electric conductance properties of carbon nanotube/epoxy resin composite[J]. Insulating Materials, 2017, 50(1): 23-27. [34] Wang X, Herth S, Hugener T, et al.Nonlinear electrical behavior of treated ZnO-EPDM nanocomposites[C]//2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena, Kansas City, MO, USA, 2006: 421-424. [35] Koktsinskaya E M, Vakser B D, Polonskii Y A.Filler selection for nonlinear anti-corona bands used in high voltage electric machines[J]. Russian Electrical Engineering, 2007, 78(3): 118-122. [36] Li Kaixuan, Zhang Boya, Li Xingwen, et al.Electric field mitigation in high-voltage high-power IGBT modules using nonlinear conductivity composites[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(11): 1844-1855. [37] Liu Chenyang, Zheng Xiaoquan, Peng Ping.The nonlinear conductivity experiment and mechanism analysis of modified polyimide (PI) composite materials with inorganic filler[J]. IEEE Transactions on Plasma Science, 2015, 43(10): 3727-3733. [38] Roberts A.Stress grading for high voltage motor and generator coils[J]. IEEE Electrical Insulation Magazine, 1995, 11(4): 26-31. [39] 胡琦, 李庆民, 刘智鹏, 等. 基于表层梯度电导调控的直流三支柱绝缘子界面电场优化方法[J]. 电工技术学报, 2022, 37(7): 1856-1865. Hu Qi, Li Qingmin, Liu Zhipeng, et al.Interfacial electric field optimization of DC tri-post insulator based on gradient surface conductance regulation[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1856-1865. [40] Li Zhonglei, Yang Zhuoran, Du Boxue.Surface charge transport characteristics of ZnO/silicone rubber composites under impulse superimposed on DC voltage[J]. IEEE Access, 2018, 7: 3008-3017. [41] Vaferi K, Vajdi M, Nekahi S, et al.Thermo-mechanical simulation of ultrahigh temperature ceramic composites as alternative materials for gas turbine stator blades[J]. Ceramics International, 2021, 47(1): 567-580. [42] Taylor N, Edin H.Stator end-winding currents in frequency-domain dielectric response measurements[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(5): 1489-1498. [43] Gartner J, Gockenbach E, Borsi H.Field-grading with semi-conducting materials based on silicon carbide (SiC)[C]//Conference Record of the 1998 IEEE International Symposium on Electrical Insulation, Arlington, VA, USA, 2002: 202-205. [44] 贺西民. 碳化硅非线性电阻导电机理[J]. 电瓷避雷器, 1992(6): 47-49. [45] 郭磊, 宁叔帆, 于开坤, 等. 碳化硅非线性导电特性的研究进展[J]. 绝缘材料, 2005, 38(3): 60-64. Guo Lei, Ning Shufan, Yu Kaikun, et al.Study progress of silicon carbide non-linear property[J]. Insulating Materials, 2005, 38(3): 60-64. [46] Han Yongsen, Li Shengtao, Min Daomin.Nonlinear conduction and surface potential decay of epoxy/SiC nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(5): 3154-3164. [47] Li Rui, Wang Yufan, Zhang Cheng, et al.Non-linear conductivity epoxy/SiC composites for emerging power module packaging: fabrication, characterization and application[J]. Materials, 2020, 13(15): 3278. [48] Zebouchi N, Li Haoluan, Haddad M A.Development of future compact and eco-friendly HVDC gas-insulated systems: shape optimization of a DC spacer model and novel materials investigation[J]. Energies, 2020, 13(12): 3288. [49] Wang Jun, Wang Xilin, Yao Youwei, et al.Nonlinear electrical characteristics of core-satellite CaCu3Ti4O12@ZnO doped silicone rubber composites[J]. RSC Advances, 2017, 7(50): 31654-31662. [50] Han Peng, Zha Junwei, Zheng Mingsheng, et al.Nonlinear electric conductivity and thermal conductivity of WS2/EPDM field grading materials[J]. Journal of Applied Physics, 2017, 122(19): 195106. [51] He L X, Tjong S C.Direct current conductivity of carbon nanofiber-based conductive polymer composites: effects of temperature and electric field[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(5): 3916-3921. [52] Köckritz T, Jansen I, Beyer E.Integration of carbon allotropes into polydimethylsiloxane to control the electrical conductivity for novel fields of application[J]. International Journal of Adhesion and Adhesives, 2018, 82: 240-253. [53] Mitic G, Lefranc G.Localization of electrical-insulation and partial-discharge failures of IGBT modules[J]. IEEE Transactions on Industry Applications, 2002, 38(1): 175-180. [54] Christen T, Donzel L, Greuter F.Nonlinear resistive electric field grading part 1: theory and simulation[J]. IEEE Electrical Insulation Magazine, 2010, 26(6): 47-59. [55] Donzel L, Schuderer J.Nonlinear resistive electric field control for power electronic modules[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(3): 955-959. [56] Ouyang Benhong, Liu Zongxi, Wang Xubin, et al.Investigation of electrical properties of ZnO@Ag/ EPDM composites[J]. AIP Advances, 2020, 10(9): 095108. [57] 李忠磊, 赵宇彤, 韩涛, 等. 高压电缆半导电屏蔽材料研究进展与展望[J]. 电工技术学报, 2022, 37(9): 2341-2354. Li Zhonglei, Zhao Yutong, Han Tao, et al.Research progress and prospect of semi-conductive shielding composites for high-voltage cables[J]. Transactions of China Electrotechnical Society, 2022, 37(9): 2341-2354. [58] Rokhlenko A, Jensen K L, Lebowitz J L.Space charge effects in field emission: one dimensional theory[J]. Journal of Applied Physics, 2010, 107(1): 014904. [59] Auckland D W, Su W, Varlow B R.Nonlinear fillers in electrical insulation[J]. IEE Proceedings - Science, Measurement and Technology, 1997, 144(3): 127-133. [60] Varlow B R, Robertson J, Donnelly K P.Nonlinear fillers in electrical insulating materials[J]. IET Science, Measurement & Technology, 2007, 1(2): 96-102. [61] Auckland D W, Brown N E, Varlow B R.Non-linear conductivity in electrical insulation[C]//IEEE 1997 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Minneapolis, MN, USA, 1997: 186-189. [62] Yang Xiao, He Jinliang, Hu Jun.Tailoring the nonlinear conducting behavior of silicone composites by ZnO microvaristor fillers[J]. Journal of Applied Polymer Science, 2015, 132(40): 42645. [63] Gao Lei, Yang Xiao, Hu Jun, et al.ZnO microvaristors doped polymer composites with electrical field dependent nonlinear conductive and dielectric characteristics[J]. Materials Letters, 2016, 171: 1-4. [64] Xie Pengkang, Wang Ziyue, Wu Kangning.Evolution of intrinsic and extrinsic electron traps at grain boundary during sintering ZnO based varistor ceramics[J]. Materials, 2022, 15(3): 1098. [65] Du Boxue, Li Zhonglei, Yang Zhuoran.Field-dependent conductivity and space charge behavior of silicone rubber/SiC composites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(5): 3108-3116. [66] Li Jin, Du Boxue, Kong Xiaoxiao, et al.Nonlinear conductivity and interface charge behaviors between LDPE and EPDM/SiC composite for HVDC cable accessory[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(3): 1566-1573. [67] Chi Qingguo, Yang Meng, Zhang Tiandong, et al.Investigation of electrical and mechanical properties of silver-hexagonal boron nitride/EPDM composites[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(14): 13321-13329. [68] Tian Jingjing, Xu Ran, He Hongliang, et al.Influence of ZnO filler size on the nonlinear electrical properties of ZnO ceramic-epoxy composite material[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(7): 5102-5105. [69] Yang Xiao, Zhao Xiaolei, Hu Jun, et al.Grading electric field in high voltage insulation using composite materials[J]. IEEE Electrical Insulation Magazine, 2018, 34(1): 15-25. [70] Yang Xiao, Meng Pengfei, Zhao Xiaolei, et al.How nonlinear V-I characteristics of single ZnO microvaristor influences the performance of its silicone rubber composite[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(2): 623-630. [71] Önneby C, Mårtensson E, Gäfvert U, et al.Electrical properties of field grading materials influenced by the silicon carbide grain size[C]//Proceedings of the 2001 IEEE 7th International Conference on Solid Dielectrics, Eindhoven, Netherlands, 2001: 43-45. [72] Zha Junwei, Dang Zhimin, Zhao Kai, et al.Prominent nonlinear electrical conduction characteristic in T-ZnOw/PTFE composites with low threshold field[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(2): 567-573. [73] Mårtensson E, Gäfvert U, Lindefelt U.Direct current conduction in SiC powders[J]. Journal of Applied Physics, 2001, 90(6): 2862-2869. [74] Yu Aiping, Ramesh P, Sun Xiaobo, et al.Enhanced thermal conductivity in a hybrid graphite nanoplatelet- carbon nanotube filler for epoxy composites[J]. Advanced Materials, 2008, 20(24): 4740-4744. [75] Mårtensson E, Nettelbled B, Gäfvert U, et al.Electrical properties of field grading materials with silicon carbide and carbon black[C]//Proceedings of the 1998 IEEE 6th International Conference on Conduction and Breakdown in Solid Dielectrics, Vasteras, Sweden, 1998: 548-552. [76] Hu Haitao, Zhang Xiaohong, Zhang Dingping, et al.Study on the nonlinear conductivity of SiC/ZnO/ epoxy resin micro-and nanocomposite materials[J]. Materials, 2019, 12(5): 761. [77] Chi Qingguo, Meng Zhaotong, Zhang Tiandong, et al.Effect of MWCNTs/ZnO inorganic fillers on the electrical, mechanical and thermal properties of SiR-based composites[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(23): 27676-27687. [78] 韩澎, 郑明胜, 查俊伟, 等. MWCNTs改善WS2/三元乙丙橡胶复合材料的非线性电导特性与热导性能[J]. 复合材料学报, 2019, 36(3): 748-755. Han Peng, Zheng Mingsheng, Zha Junwei, et al.Improved nonlinear conductivity and thermal conductivity of WS2/ethylene propylene diene monomer composites with MWCNTs[J]. Acta Materiae Compositae Sinica, 2019, 36(3): 748-755. [79] Chi Qingguo, Jiang Longkun, Zhang Tiandong, et al.Study on electrical properties of donor ZnO nanoparticles/EPDM composites[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(22): 26894-26904. [80] Chi Q G, Yang M, Zhang C H, et al.Nonlinear electrical conductivity and thermal properties of AgNPs/BN/EPDM composites for cable accessory[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(4): 1081-1088. [81] Chi Qingguo, Hao Yuyi, Zhang Tiandong, et al.Study on nonlinear conductivity and breakdown characteristics of zinc oxide-hexagonal boron nitride/EPDM composites[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(23): 19678-19688. [82] Zhao Xiaolei, Yang Xiao, Hu Jun, et al.Globally reinforced mechanical, electrical, and thermal properties of nonlinear conductivity composites by surface treatment of varistor microspheres[J]. Composites Science and Technology, 2019, 175: 151-157. [83] Liang Hucheng, Du Boxue, Li Jin, et al.Effects of non-linear conductivity on charge trapping and de-trapping behaviours in epoxy/SiC composites under DC stress[J]. IET Science, Measurement & Technology, 2018, 12(1): 83-89. [84] Du Boxue, Dong Jianan, Liang Hucheng.Electric field control by permittivity functionally graded and superficially non-linear conductivity materials for DC-GIS spacer[J]. High Voltage, 2022, 7(5): 992-1000. [85] Zhao Xiaolei, Meng Pengfei, Hu Jun, et al.Simulation and design of 500 kV DC cable terminal accessory based on ZnO varistor microsphere composites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(1): 10-16. [86] Li Zhongyuan, Zhao Hong, Zhang Changhai.Study on nonlinear conductivity of CCTO/EPDM rubber composites[J]. Materials, 2018, 11(9): 1590. |
|
|
|