|
|
Multi-Scene Control Method of Active Distribution Network Based on Electromagnetic Rotating Power Flow Controller |
Yan Xiangwu1, Shao Chen1, Wu Ming2, Peng Weifeng1, Jia Jiaoxin1, Zhang Chenyu3 |
1. Hebei Provincial Key Laboratory of Distributed Energy Storage and Microgrid North China Electric Power University Baoding 071003 China; 2. State Grid Shanghai Energy Internet Research Institute Co. Shanghai 201210 China; 3. Electric Power Scientific Research Institute of State Grid Jiangsu Electric Power Co. Nanjing 211100 China |
|
|
Abstract The high proportion of distributed power supply access and the advancement of the development of two-end power supply system bring the problems of voltage crossing limit, phase angle difference line closing loop, and tidal current regulation and control difficulties to the distribution network, etc. The solution of using electromagnetic rotary tidal current controller (RPFC) is proposed, which has the advantages of high applicability, low cost and high reliability. Firstly, the RPFC topology and working principle are analyzed, and the RPFC steady-state voltage source model is established. RPFC consists of two rotor transfer phase transformers RPST1 and RPST2, and based on the electromagnetic induction principle, the rotor angle rotation of the two RPSTs is used to synthesize a stator voltage phase volume with constant amplitude and adjustable phase angle of 360°, respectively, and the two stator voltage phase volumes are superimposed so as to inject a series voltage with adjustable amplitude and phase angle in the line The RPST is similar to a transformer at rest, with a certain ratio between the stator side voltage and the rotor side voltage, and the phase difference is related to the angle α1 and α2 between the stator and the rotor, for the multi-pole RPST, the rotor angle only needs to be moved by a small mechanical angle to change the voltage phase in the line. On this basis, the voltage crossing limit model and variable speed control strategy based on RPFC are constructed respectively, and the specific principle is to make the servo motor perform complete speed adaptive control, so that α satisfies to reduce the servo motor speed when it is close to the set value and stop exactly when it reaches the set value. The RPFC phase-angle difference line flexible loop-closing model and its control strategy based on the principle of phase synthesis are constructed. For the phase-angle difference line loop-closing problem, the voltage vector difference on both sides of the loop-closing point is compensated by RPFC, which can effectively suppress the loop current and meet the demand of non-stop loop-closing of the system. The RPFC power decoupling control model based on instantaneous reactive power theory and the corresponding speed coordination control strategy are constructed, and the speed coordination control design is carried out for two sets of servo motors, so that α1 and α2 can meet the requirement of high precision regulation by stopping the motion at the same time within the set value range. Finally, a 380 V/40 kV·A test prototype of RPFC is built and verified by various experimental conditions. The experimental results show that only changing the RPFC control strategy can achieve its effective and stable regulation under various scenarios, which verifies the effectiveness and correctness of the proposed control strategy.
|
Received: 09 January 2023
|
|
|
|
|
[1] 郭立东, 雷鸣宇, 杨子龙, 等. 光储微网系统多目标协调控制策略[J]. 电工技术学报, 2021, 36(19): 4121-4131. Guo Lidong, Lei Mingyu, Yang Zilong, et al.Multi-objective coordinated control strategy for photovoltaic and energy-storage microgrid system[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4121-4131. [2] 赵毅, 吴志, 钱仲豪, 等. 计及源-荷时空相关性的主动配电网分布式优化调度[J]. 电力系统自动化, 2019, 43(19): 68-76. Zhao Yi, Wu Zhi, Qian Zhonghao, et al.Distributed optimal dispatch of active distribution network considering source-load temporal and spatial correlations[J]. Automation of Electric Power Systems, 2019, 43(19): 68-76. [3] 郑重, 苗世洪, 李超, 等. 面向微型能源互联网接入的交直流配电网协同优化调度策略[J]. 电工技术学报, 2022, 37(1): 192-207. Zheng Zhong, Miao Shihong, Li Chao, et al.Coordinated optimal dispatching strategy of AC/DC distribution network for the integration of micro energy internet[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 192-207. [4] 陈厚合, 丛前, 姜涛, 等. 多能协同的配电网供电恢复策略[J]. 电工技术学报, 2022, 37(3): 610-622, 685. Chen Houhe, Cong Qian, Jiang Tao, et al.Distribution systems restoration with multi-energy synergy[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 610-622, 685. [5] 赵玉林, 李海凤, 牛泽晗, 等. 配电变压器无触点有载自动调压的一种新方案[J]. 电网技术, 2016, 40(12): 3888-3893. Zhao Yulin, Li Haifeng, Niu Zehan, et al.A new scheme of contactless on-load automatic voltage regulation for distribution transformers[J]. Power System Technology, 2016, 40(12): 3888-3893. [6] 孙惠, 翟海保, 吴鑫. 源网荷储多元协调控制系统的研究及应用[J]. 电工技术学报, 2021, 36(15): 3264-3271. Sun Hui, Zhai Haibao, Wu Xin.Research and application of multi-energy coordinated control of generation, network, load and storage[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3264-3271. [7] 吴晓蓉, 莫骏, 魏金萧. 基于分区协调控制的主动配电网电压支撑运行策略[J/OL]. 现代电力, 2023, DOI:/10.19725/j.cnki.1007-2322.2022.0138. Wu Xiaorong, Mo Jun, Wei Jinxiao.Voltage support operation strategy of active distribution network based on zone coordination control [J/OL]. Modern Power, 2023, DOI:/10.19725/j.cnki.1007-2322.2022.0138. [8] 刘广艳, 何春. 简述动态电压恢复器(DVR)在配电网中的应用[J]. 电气时代, 2022(5): 51-55. Liu Guangyan, He Chun.The application of dynamic voltage restorer (DVR) in distribution network is briefly described[J]. Electric Age, 2022(5): 51-55. [9] 颜湘武, 贾焦心, 王德胜, 等. 基于电力弹簧的低压台区用户侧电压调节方法[J]. 电工技术学报, 2020, 35(12): 2623-2631. Yan Xiangwu, Jia Jiaoxin, Wang Desheng, et al.User-side voltage regulation method for transformer areas based on electric spring[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2623-2631. [10] 刘欣, 梁贵书, 王利桐, 等. 双芯移相变压器中有载分接开关技术参数确定方法[J]. 高电压技术, 2017, 43(3): 838-844. Liu Xin, Liang Guishu, Wang Litong, et al.Calculation method for technical parameters of on-load tap changer in phase shifting transformer[J]. High Voltage Engineering, 2017, 43(3): 838-844. [11] 高聪哲, 黄文焘, 余墨多, 等. 基于智能软开关的主动配电网电压模型预测控制优化方法[J]. 电工技术学报, 2022, 37(13): 3263-3274. Gao Congzhe, Huang Wentao, Yu Moduo, et al.A model predictive control method to optimize voltages for active distribution networks with soft open point[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3263-3274. [12] Fujita H,Baker D H, Ihara S, et al.Power flow controller using rotary phase shifting transformers, CIGRE Session.2000:37-102. [13] Ba A O, Peng Tao, Lefebvre S.Rotary power flow controller modeling for dynamic performance evaluation[C]//2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 2008: 1-10. [14] Ba A O, Peng Tao, Lefebvre S.Rotary power-flow controller for dynamic performance evaluation—part I: RPFC modeling[J]. IEEE Transactions on Power Delivery, 2009, 24(3): 1406-1416. [15] 谭振龙, 张春朋, 姜齐荣, 等. 旋转潮流控制器与统一潮流控制器和Sen Transformer的对比[J]. 电网技术, 2016, 40(3): 868-874. Tan Zhenlong, Zhang Chunpeng, Jiang Qirong, et al.Comparative research on rotary power flow controller, unified power flow controller and Sen Transformer[J]. Power System Technology, 2016, 40(3): 868-874. [16] 颜湘武,邵晨,彭维锋,等.基于旋转式潮流控制器的有源配电网柔性合环及紧急功率控制方法[J].中国电机工程学报, 2023, 43(16): 6192-6205. Yan Xiangwu, Shao Chen, Peng Weifeng, et al.Flexible loop and emergency power control method of active distribution network based on rotary power flow controller[J]. Proceedings of the CSEE, 2023, 43(16): 6192-6205. [17] 谭振龙, 张春朋, 姜齐荣, 等. 旋转潮流控制器稳态特性研究[J]. 电网技术, 2015, 39(7): 1921-1926. Tan Zhenlong, Zhang Chunpeng, Jiang Qirong, et al.Study on steady state characteristics of rotary power flow controller[J]. Power System Technology, 2015, 39(7): 1921-1926. [18] 姚远, 李叶松, 雷力, 等. 基于电机驱动系统自传感的机械故障诊断研究综述[J]. 电工技术学报, 2022, 37(12): 2936-2948. Yao Yuan, Li Yesong, Lei Li, et al.A research review on application of motor drive system self-sensing in mechanical fault diagnosis[J]. Transactions of China Electrotechnical Society, 2022, 37(12): 2936-2948. [19] 王治国, 郑泽东, 李永东, 等. 三相异步电机电流多步预测控制方法[J]. 电工技术学报, 2018, 33(9): 1975-1984. Wang Zhiguo, Zheng Zedong, Li Yongdong, et al.Predictive current control for three phase induction machine using multi-steps prediction horizon[J]. Transactions of china Electrotechnical Society, 2018, 33(9): 1975-1984. [20] 夏长亮, 李莉, 谷鑫, 等. 双永磁电机系统转速同步控制[J]. 电工技术学报, 2017, 32(23): 1-8. Xia Changliang, Li Li, Gu Xin, et al.Speed synchronization control of dual-PMSM system[J]. Transactions of China Electrotechnical Society, 2017, 32(23): 1-8. [21] 杨影, 张杰鸣, 徐国卿, 等. 转速负反馈在伺服系统机械谐振抑制中的应用研究[J]. 电工技术学报, 2018, 33(23): 5459-5469. Yang Ying, Zhang Jieming, Xu Guoqing, et al.Application research on speed negative feedback in mechanical resonance suppression in servo system[J]. Transactions of China Electrotechnical Society, 2018, 33(23): 5459-5469. [22] 虞宋楠, 刘念, 赵波. 面向光伏用户群的多主体分级电压调控方法[J]. 电力系统自动化, 2022, 46(5): 20-41. Yu Songnan, Liu Nian, Zhao Bo.Multi-agent classified voltage regulation method for photovoltaic user group[J]. Automation of Electric Power Systems, 2022, 46(5): 20-41. |
|
|
|