|
|
Multi-Mode Coordination Control of Virtual Synchronous Generator under Unbalanced Power Grid |
Pan Zixun1, Yang Xiaofeng1, Zhao Rui1, Cui Chenyang1, Yan Tao2 |
1. School of Electrical Engineering Beijing Jiaotong University Beijing 100044 China; 2. State Key Laboratory of Operation and Control of Renewable Energy & Storage Systems China Electric Power Research Institute Beijing 100192 China |
|
|
Abstract Virtual synchronous generator control has been widely studied in renewable energy generation to provide equivalent inertia support for the power grid. However, current distortion and power oscillation occur severely when the grid voltage becomes unbalanced, significantly aggravating the power supply quality of renewable energy generation. The existing methods generally take the fundamental-frequency negative-sequence component as the VSG control object to solve the above issues. It is obvious that positive-negative sequence separation increases the calculation burden, and active and reactive power oscillations cannot be suppressed simultaneously. In addition, the mutual influence between optimization targets is rarely considered, so the realization of one optimization target may lead to the deterioration of the others. Therefore, this paper proposes a multi-mode coordination control of VSG and quantitatively analyzes the restrictive relation of VSG current distortion and power fluctuation under an unbalanced power grid. This paper first analyzes the VSG power oscillation mechanism under an unbalanced power grid and then further studies the harmonic components of VSG grid-connected current in constant-power mode. The results indicate that VSG grid-connected current contains low-order odd harmonic components, and the proportion determines double-line frequency active and reactive power oscillation. On this basis, the initial current reference is obtained from VSG virtual power calculation to maintain the operating characteristics of the synchronous machine. Then a multi-resonance current inner loop controls the fundamental frequency current and the harmonic components. It should be noted that the coordination coefficient is introduced to modify the current reference of the harmonic controller, thereby realizing the VSG multi-mode coordination control. Finally, the influence of the coordination coefficient on VSG current quality and power ripple is quantified, and the calculation method of selection range is given. In order to validate the effectiveness of the proposed method, a modular multilevel converter (MMC) is selected as the grid-connected AC-DC topology, and the simulation and experiment are respectively performed on Matlab/Simulink platform and a three-phase five-level MMC prototype. In the simulation, the power step performance of the proposed method is well verified under balanced-current and constant-power modes. After that, VSG multi-mode coordination control and the corresponding coordination coefficient selection method are simulated, which verifies the proposed method. As for the experiment, the verification is carried out when the b-phase voltage drops to 0.6(pu). The experiment waveforms and the components of VSG current under the two typical modes further verified the validity of the aforementioned theoretical analysis and the control strategy. In the process of VSG multi-mode coordination, the experimental results show that the trends of current total harmonic distortion and the power ripple are consistent with the theoretical calculation. The following conclusions can be drawn from this paper: (1) Under an unbalanced power grid, the VSG grid-connected current appears as low-order odd harmonic components in constant-power mode, and the amplitude is positively related to the voltage imbalance degree. (2) The proposed method can realize the multi-mode coordinated control between balanced-current and constant-power modes to flexibly regulate the VSG output current quality and power ripple. (3) This method simplifies the control and reduces the calculation burden without positive-negative sequence separation and double dq transformation.
|
Received: 13 January 2023
|
|
|
|
|
[1] 周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893-1904, 2205. Zhou Xiaoxin, Chen Shuyong, Lu Zongxiang, et al.Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893-1904, 2205. [2] 刘钊汛, 秦亮, 杨诗琦, 等. 面向新型电力系统的电力电子变流器虚拟同步控制方法评述[J]. 电网技术, 2023, 47(1): 1-16. Liu Zhaoxun, Qin Liang, Yang Shiqi, et al.Review on virtual synchronous generator control technology of power electronic converter in power system based on new energy[J]. Power System Technology, 2023, 47(1): 1-16. [3] 张子扬, 张宁, 杜尔顺, 等. 双高电力系统频率安全问题评述及其应对措施[J]. 中国电机工程学报, 2022, 42(1): 1-25. Zhang Ziyang, Zhang Ning, Du Ershun, et al.Review and countermeasures on frequency security issues of power systems with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2022, 42(1): 1-25. [4] 郑军铭, 冯丽, 蔡志远, 等. 提高短时中断故障期间新能源微电网稳定性的惯性储能永磁发电机组[J]. 电工技术学报, 2022, 37(23): 6000-6010. Zheng Junming, Feng Li, Cai Zhiyuan, et al.The inertia motivity permanent magnet machine set for improving the stability of new energy microgrid during short-term interruption[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 6000-6010. [5] Zhong Qingchang, Weiss G.Synchronverters: inver- ters that mimic synchronous generators[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1259-1267. [6] 于彦雪, 关万琳, 陈晓光, 等. 基于序阻抗的虚拟同步机同步频率谐振现象[J]. 电工技术学报, 2022, 37(10): 2584-2595. Yu Yanxue, Guan Wanlin, Chen Xiaoguang, et al.Synchronous frequency resonance in virtual syn- chronous generator based on sequence-impedance[J]. Transactions of China Electrotechnical Society, 2022, 37(10): 2584-2595. [7] 胡石阳, 刘国荣. 基于虚拟同步机的新能源并网智能控制研究[J]. 电气技术, 2022, 23(10): 10-17. Hu Shiyang, Liu Guorong.Research on intelligent control of grid connected new energy based on virtual synchronous machine[J]. Electrical Engineering, 2022, 23(10): 10-17. [8] 章艳, 高晗, 张萌. 不同虚拟同步机控制下双馈风机系统频率响应差异研究[J]. 电工技术学报, 2020, 35(13): 2889-2900. Zhang Yan, Gao Han, Zhang Meng.Research on frequency response difference of doubly-fed indu- ction generator system controlled by different virtual synchronous generator controls[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2889-2900. [9] 孟建辉, 王毅, 石新春, 等. 基于虚拟同步发电机的分布式逆变电源控制策略及参数分析[J]. 电工技术学报, 2014, 29(12): 1-10. Meng Jianhui, Wang Yi, Shi Xinchun, et al.Control strategy and parameter analysis of distributed inverters based on VSG[J]. Transactions of China Electrotechnical Society, 2014, 29(12): 1-10. [10] 颜湘武, 张伟超, 崔森, 等. 基于虚拟同步机的电压源逆变器频率响应时域特性和自适应参数设计[J]. 电工技术学报, 2021, 36(增刊1): 241-254. Yan Xiangwu, Zhang Weichao, Cui Sen, et al.Frequency response characteristics and adaptive parameter tuning of voltage-sourced converters under VSG control[J]. Transactions of China Electro- technical Society, 2021, 36(S1): 241-254. [11] 刘其辉, 逄思敏, 吴林林, 等. 大规模风电汇集系统电压不平衡机理、因素及影响规律[J]. 电工技术学报, 2022, 37(21): 5435-5450. Liu Qihui, Pang Simin, Wu Linlin, et al.The mechanism, factors and influence rules of voltage imbalance in wind power integration areas[J]. Transa- ctions of China Electrotechnical Society, 2022, 37(21): 5435-5450. [12] 缪惠宇, 梅飞, 张宸宇, 等. 基于虚拟阻抗的虚拟同步整流器三相不平衡控制策略[J]. 电工技术学报, 2019, 34(17): 3622-3630. Miao Huiyu, Mei Fei, Zhang Chenyu, et al.Three phase unbalanced control strategy for virtual syn- chronous rectifier based on virtual impedance[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3622-3630. [13] 韦徵, 姬秋华, 王伟, 等. 适用于电网不对称下的自同步电压源逆变器控制策略[J]. 电力系统自动化, 2021, 45(10): 124-131. Wei Zheng, Ji Qiuhua, Wang Wei, et al.Control strategy of self-synchronous voltage source inverter for asymmetric power grid[J]. Automation of Electric Power Systems, 2021, 45(10): 124-131. [14] 陈天一, 陈来军, 汪雨辰, 等. 考虑不平衡电网电压的虚拟同步发电机平衡电流控制方法[J]. 电网技术, 2016, 40(3): 904-909. Chen Tianyi, Chen Laijun, Wang Yuchen, et al.Balanced current control of virtual synchronous generator considering unbalanced grid voltage[J]. Power System Technology, 2016, 40(3): 904-909. [15] Zheng Xuemei, Wang Chao, Pang Songnan.Injecting positive-sequence current virtual synchronous gen- erator control under unbalanced grid[J]. IET Rene- wable Power Generation, 2019, 13(1): 165-170. [16] 万晓凤, 胡海林, 聂晓艺, 等. 电网电压不平衡时的改进虚拟同步机控制策略[J]. 电网技术, 2017, 41(11): 3573-3581. Wan Xiaofeng, Hu Hailin, Nie Xiaoyi, et al.An improved control strategy for virtual synchronous generator under unbalanced grid voltage[J]. Power System Technology, 2017, 41(11): 3573-3581. [17] 肖湘宁, 陈萌. 不平衡电压下虚拟同步发电机功率控制策略[J]. 电力自动化设备, 2017, 37(8): 193-200. Xiao Xiangning, Chen Meng.Power control of virtual synchronous generator under unbalanced grid voltage[J]. Electric Power Automation Equipment, 2017, 37(8): 193-200. [18] Wang Yichao, Li Xiangqi, Li Yan.Power-current coordinated control without sequence extraction under unbalanced voltage conditions[J]. IET Power Electronics, 2020, 13(11): 2274-2280. [19] 王仰铭, 孙丹, 年珩, 等. 不平衡电网下自同步虚拟同步机拓展功率控制策略研究[J]. 电网技术, 2020, 44(9): 3368-3375. Wang Yangming, Sun Dan, Nian Heng, et al.Extended power control strategy of self-synchronized virtual synchronous generator under unbalanced power grid[J]. Power System Technology, 2020, 44(9): 3368-3375. [20] 郭小强, 张学, 卢志刚, 等. 不平衡电网电压下光伏并网逆变器功率/电流质量协调控制策略[J]. 中国电机工程学报, 2014, 34(3): 346-353. Guo Xiaoqiang, Zhang Xue, Lu Zhigang, et al.Coordinate control of power and current quality for grid-connected PV inverters under unbalanced grid voltage[J]. Proceedings of the CSEE, 2014, 34(3): 346-353. [21] 国家市场监督管理总局, 国家标准化管理委员会. 光伏发电并网逆变器技术要求: GB/T 37408-2019[S]. 北京: 中国标准出版社, 2019. [22] 杨晓峰, 林智钦, 郑琼林, 等. 模块组合多电平变换器的研究综述[J]. 中国电机工程学报, 2013, 33(6): 1-15. Yang Xiaofeng, Lin Zhiqin, Zheng Trillion Q, et al.A review of modular multilevel converters[J]. Pro- ceedings of the CSEE, 2013, 33(6): 1-15. [23] 孟沛彧, 向往, 潘尔生, 等. 分址建设直流输电系统拓扑方案与运行特性研究[J]. 电工技术学报, 2022, 37(19): 4808-4822. Meng Peiyu, Xiang Wang, Pan Ersheng, et al.Research on topology and operation characteristics of HVDC transmission system based on site-division construction[J]. Transactions of China Electro- technical Society, 2022, 37(19): 4808-4822. [24] Pan Zixun, Yang Xiaofeng, Li Zejie, et al.Coor- dinated power control strategy of modified electrical energy router[C]//IEEE Energy Conversion Congress and Exposition(ECCE), Detroit, MI, USA, 2020: 4849-4856. |
|
|
|