[1] Texas Instruments, LM25149 datasheet (2020).Available: https://www.ti.com.cn/cn/lit/ds/symlink/lm25149.pdf
[2] Texas Instruments, TPS2585x datasheet (2021).Available: https://www.ti.com.cn/cn/lit/ds/symlink/tps25850-q1.pdf
[3] Texas Instruments, LM5143Q1 datasheet (2021).Available: https://www.ti.com.cn/cn/lit/ds/symlink/lm5143-q1.pdf
[4] 何亮, 方宇, 李吉, 等. 峰值电流控制DC/DC变换器的恒值限流方法[J]. 电工技术学报, 2006, 21(10): 86-89, 105.
He Liang, Fang Yu, Li Ji, et al.Over Current protection for peak current controlled DC-DC converter[J]. Transactions of China Electrotechnical Society, 2006, 21(10): 86-89, 105.
[5] Suntio T.On dynamic modeling of PCM-controlled converters—Buck converter as an example[J]. IEEE Transactions on Power Electronics, 2018, 33(6): 5502-5518.
[6] Ridley R B.A new, continuous-time model for current-mode control (power convertors)[J]. IEEE Transactions on Power Electronics, 1991, 6(2): 271-280.
[7] James D.Moore's law continues into the 1x-nm era[C]//2016 21st International Conference on Ion Implantation Technology (IIT), Tainan, Taiwan, China, 2017: 1-10.
[8] Borkar S, Dubey P, Kahn K C, et al.Platform 2015: intel ® processor and platform evolution for the next decade[J]. Technology, 2005: 1-10
[9] Stanford E.New Processors Will Require New Powering Technologies[J]. Power Electronics Technology, 2002, 28(2): 32-42.
[10] Wong P L, Lee F C, Xu Peng, et al.Critical inductance in voltage regulator modules[J]. IEEE Transactions on Power Electronics, 2002, 17(4): 485-492.
[11] Qiu Yang, Yao Kaiwei, Meng Yu, et al.Control-loop bandwidth limitations for multiphase interleaving buck converters[C]//Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004. APEC '04, Anaheim, CA, USA, 2004: 1322-1328.
[12] Middlebrook R D. Topics in multiple-loop regulators and current-mode programming[J]. IEEE Transactions on Power Electronics, 1987, PE-2(2): 109-124.
[13] 高国庆, 雷万钧, 袁晓杰, 等. 双有源全桥变换器全状态离散迭代建模与输出电压纹波分析[J]. 电工技术学报, 2021, 36(2): 330-340.
Gao Guoqing, Lei Wanjun, Yuan Xiaojie, et al.Full-state discrete-time model and the output-voltage-ripple analysis of the dual active bridge converter[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 330-340.
[14] Li Jian, Current-Mode Control: Modeling and its Digital Application[D]. Virginia: Virginia Tech Dissertation, 2009.
[15] Yan Na, Ruan Xinbo, Li Xin.A general approach to sampled-data modeling for ripple-based control—part I: peak/valley current mode and peak/valley voltage mode[J]. IEEE Transactions on Power Electronics, 2022, 37(6): 6371-6384.
[16] Qiu Yang, Xu Ming, Sun Juanjuan, et al.A generic high-frequency model for the nonlinearities in buck converters[J]. IEEE Transactions on Power Electronics, 2007, 22(5): 1970-1977.
[17] 岳小龙, 卓放, 杨书豪, 等. Buck变换器的多频率矩阵模型及其在分布式供电系统中的应用[J]. 电工技术学报, 2017, 32(4): 250-259.
Yue Xiaolong, Zhuo Fang, Yang Shuhao, et al.A multifrequency matrix model for buck converters and its application in distributed power system[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 250-259.
[18] Hsiao S F, Chen Dan, Chen C J, et al.A new multiple-frequency small-signal model for high-bandwidth computer V-core regulator applications[J]. IEEE Transactions on Power Electronics, 2016, 31(1): 733-742.
[19] Cheng Xiangpeng, Liu Jinjun, Liu Zeng.A generalized multifrequency small-signal model for high-bandwidth buck converters under constant-frequency voltage-mode control[J]. IEEE Transactions on Power Electronics, 2020, 35(8): 8186-8199.
[20] Cheng Xiangpeng, Liu Jinjun, Liu Zeng.Accurate small-signal modeling and stability analysis of wide-input buck converter considering modulation waveform ripples[J]. IEEE Transactions on Power Electronics, 2022, 37(6): 6962-6971.
[21] Xu Shen, Li Fei, Yao Yunpeng, et al.A high-frequency model for a PCM buck converter[J]. IEEE Transactions on Power Electronics, 2015, 30(4): 2304-2312.
[22] Hung M H, Shu Lisun, Ho S J, et al.A novel intelligent multiobjective simulated annealing algorithm for designing robust PID controllers[J]. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 2008, 38(2): 319-330.
[23] 李家祥, 汪凤翔, 柯栋梁, 等. 基于粒子群算法的永磁同步电机模型预测控制权重系数设计[J]. 电工技术学报, 2021, 36(1): 50-59, 76.
Li Jiaxiang, Wang Fengxiang, Ke Dongliang, et al.Weighting factors design of model predictive control for permanent magnet synchronous machine using particle swarm optimization[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 50-59, 76.
[24] 江凌峰,龚邻骁,金新宇等. 基于遗传算法的多模块IPOP双有源全桥DC-DC变换器总电流有效值优化策略[J/OL]. 电工技术学报,2023:1-15.
Jiang Lingfeng, Gong Lingxiao, Jin Xinyu, et al.Total Root Mean Square Current Optimization of IPOP Dual Active Bridge DC-DC Converter Based on Genetic Algorithm [J/OL]. Transactions of China Electrotechnical Society, 2023: 1-15.
[25] 袁立强, 陆子贤, 孙建宁, 等. 电能路由器设计自动化综述—设计流程架构和遗传算法[J]. 电工技术学报, 2020, 35(18): 3878-3893.
Yuan Liqiang, Lu Zixian, Sun Jianning, et al.Design automation for electrical energy router-design workflow framework and genetic algorithm: a review[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3878-3893.
[26] Divakar A, Jacob J.Genetic algorithm based tuning of nonfragile and robust PI controller for PSFB DC-DC converter[C]//2019 International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 2020: 1846-1851.
[27] Peng C C, Lee C L.Performance demands based servo motor speed control: a genetic algorithm proportional-integral control parameters design[C]//2020 International Symposium on Computer, Consumer and Control (IS3C), Taichung City, Taiwan, China, 2021: 469-472.
[28] Wang Chang, Zsurzsan T G, Zhang Zhe.Genetic algorithm assisted parametric design of splitting inductance in high frequency GaN-based dual active bridge converter[J]. IEEE Transactions on Industrial Electronics, 2023, 70(1): 522-531.
[29] Kostov K S, Kyyra J J.Genetic algorithm optimization of peak current mode controlled buck converter[C]//Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005, SMCia/05, Espoo, Finland, 2005: 111-116.
[30] 蔡子龙, 束洪春, 单节杉. 考虑运营成本的电动公交车集群换电优化调度策略[J]. 电力系统自动化, 2022, 46(17): 205-217.
Cai Zilong, Shu Hongchun, Shan Jieshan.Optimal dispatching strategy for battery swapping of electric bus cluster considering operation cost[J]. Automation of Electric Power Systems, 2022, 46(17): 205-217. |