|
|
Overview of Multi-Star Multi-Phase Permanent Magnet Machines with High Torque Performance and Its Key Technologies |
Sun Yuhua, Zhao Wenxiang, Ji Jinghua, Zeng Yu, Ling Zhijian |
School of Electrical and Information Engineering Jiangsu University Zhenjiang 212013 China |
|
|
Abstract Compared with the traditional three-phase permanent-magnet (PM) machine, the multi-star multi-phase PM machine has been paid much expectation in high-end applications due to its high torque density, small torque ripple, and robust fault tolerance. The phase shift angle is the key to affecting the torque performance of multi-star multi-phase PM machines. The general expression of the PM torque and reluctance torque is derived, and the elimination principle of torque harmonics is analyzed. Therefore, the optimal phase shift is summarized from the maximum, average, and minimum torque ripples. The purpose of this paper is to guide machine designers in phase shift design. Firstly, the multi-star multi-phase winding configurations are divided into two categories based on the winding set number k. The winding set number of the first type is odd, and the second type is even. According to the relationship between the torque harmonic phase, winding set number and phase number, the optimal phase shift can be calculated. Then, the classical research of domestic and abroad scholars in this field is overviewed and summarized, including the dual three-phase winding, dual five-phase winding, triple three-phase winding, four three-phase winding, etc. The finite element simulation results verify the advantages of the optimal phase shift in improving torque performance. Moreover, the enhancement effect is not influenced by the slot/pole combination and rotor structure. Secondly, the torque performance of the PM machines with multi-star multi-phase winding configuration can be further improved through harmonic efficiency enhancement technology. The typical methods are the current harmonic injection and PM shape modification. The former is advantageous to improve the armature reaction magnetic field, while the latter is focused on the PM magnetic field. Thanks to the compensation effect of optimal phase shift on torque harmonic phase, the torque density can be significantly improved without additional torque ripple. Thirdly, based on ensuring high torque performance, improving reliability is an important development direction in the field of multi-star multi-phase PM machine. The relevant performances include short-circuit current suppression, phase-to-phase independence improvement, and winding redundancy enhancement. The core idea is to improve the freedom degree of the machine and realize the electrical, magnetic, thermal and physical isolation between the winding sets. The results show that the phase shift is inconsistent in torque and reliability, and some tradeoffs must be made. The following conclusions can be drawn: (1) Based on the comparison of torque performance, the optimal phase shift is equal to 2π/(mk) when the phase number m is even or phase number m is odd and the winding set number k is even. Correspondingly, the optimal phase shift is 2π/(mk) or π/(mk) if the phase number m is odd and the winding set number k is odd. (2) The dual three-phase winding PM machine is the most widely used, and the optimal phase shift is 30 °. This winding configuration can increase the fundamental harmonic content and eliminate the odd times of 6 in torque harmonics. With the rapid development of power electronics technology and high-power devices, the application of the PM machine and its control system, represented by multiple three-phase winding configurations, has become increasingly mature. Future research should focus on high torque performance design at magnetic field weakening situations, refined analysis model considering cogging torque, and torque performance robustness research under fault conditions.
|
Received: 12 June 2022
|
|
|
|
|
[1] 马伟明. 关于电工学科前沿技术发展的若干思考[J]. 电工技术学报, 2021, 36(22): 4627-4636. Ma Weiming.Thoughts on the development of frontier technology in electrical engineering[J]. Transactions of China Electrotechnical Society, 2021, 36(22): 4627-4636. [2] 马伟明, 王东, 程思为, 等. 高性能电机系统的共性基础科学问题与技术发展前沿[J]. 中国电机工程学报, 2016, 36(8): 2025-2035. Ma Weiming, Wang Dong, Cheng Siwei, et al.Common basic scientific problems and development of leading-edge technology of high performance motor system[J]. Proceedings of the CSEE, 2016, 36(8): 2025-2035. [3] 谢颖, 毛攀, 胡圣明, 等. 二维场计及横向漏电流影响的感应电机损耗与转矩分析[J]. 电工技术学报, 2022, 37(4): 849-860. Xie Ying, Mao Pan, Hu Shengming, et al.Analysison lossand torque of induction motor considering inter-bar current in two-dimensional field[J]. Transactions of China Electrotechnical Society, 2022, 37(4): 849-860. [4] Zhou Yunhan, Ji Jinghua, Zhao Wenxiang, et al.Modulated vibration reduction design for integral-slot interior permanent magnet synchronous machines[J]. IEEE Transactions on Industrial Electronics, 2022, 69(12): 12249-12260. [5] 胡鹏飞, 王东, 靳栓宝, 等. 偏心磁极永磁电机气隙磁场正弦优化模型[J]. 电工技术学报, 2019, 34(18): 3759-3768. Hu Pengfei, Wang Dong, Jin Shuanbao, et al.Sinusoidal optimization model for air gap magnetic field of eccentric magnetic pole permanent magnet motor[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3759-3768. [6] 刘国海, 王艳阳, 陈前. 非对称V型内置式永磁同步电机的多目标优化设计[J]. 电工技术学报, 2018, 33(增刊2): 385-393. Liu Guohai, Wang Yanyang, Chen Qian.Multi- objective optimization of an asymmetric V-shaped interior permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 385-393. [7] 刘家琦, 白金刚, 郑萍, 等. 基于磁场调制原理的齿槽转矩研究[J]. 电工技术学报, 2020, 35(5): 931-941. Liu Jiaqi, Bai Jingang, Zheng Ping, et al.Investi- gation of cogging torque based on magnetic field modulation principle[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 931-941. [8] Bhagubai P P C, Fernandes J F P. Multi-objective optimization of electrical machine magnetic core using a vanadium-cobalt-iron alloy[J]. IEEE Transa- ctions on Magnetics, 2020, 56(2): 1-9. [9] 佟明昊, 程明, 许芷源, 等. 电动汽车用车载集成式充电系统若干关键技术问题及解决方案[J]. 电工技术学报, 2021, 36(24): 5125-5142. Tong Minghao, Cheng Ming, Xu Zhiyuan, et al.Key issues and solutions of integrated on-board chargers for electric vehicles[J]. Transactions of China Elec- trotechnical Society, 2021, 36(24): 5125-5142. [10] 黄林森, 赵文祥, 吉敬华, 等. 稳态性能改善的双三相永磁电机直接转矩控制[J]. 电工技术学报, 2022, 37(2): 355-367. Huang Linsen, Zhao Wenxiang, Ji Jinghua, et al.Direct torque control for dual three-phase permanent- magnet machine with improved steady-state per- formance[J]. Transactions of China Electrotechnical Society, 2022, 37(2): 355-367. [11] Sun Yuhua, Zhao Wenxiang, Ji Jinghua, et al.Torque improvement in dual M-phase permanent-magnet machines by phase shift for electric ship appli- cations[J]. IEEE Transactions on Vehicular Tech- nology, 2020, 69(9): 9601-9612. [12] 李烽. 九相磁通切换型永磁风力发电机设计与分析[D]. 南京: 东南大学, 2018. [13] 魏永清, 康军, 曾海燕, 等. 十二相永磁电机驱动系统的容错控制策略[J]. 电工技术学报, 2019, 34(21): 4467-4473. Wei Yongqing, Kang Jun, Zeng Haiyan, et al.Fault- tolerant control strategy for twelve-phase permanent magnet synchronous motor propulsion system[J]. Transactions of China Electrotechnical Society, 2019, 34(21): 4467-4473. [14] 匡志, 杜博超, 徐浩, 等. 十五相永磁同步电机的驱动控制与容错运行[J]. 电工技术学报, 2019, 34(13): 2734-2743. Kuang Zhi, Du Bochao, Xu Hao, et al.Drive control and fault-tolerant operation of fifteen phase per- manent magnet synchronous motors[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2734-2743. [15] 郑军强, 赵文祥, 吉敬华, 等. 分数槽集中绕组永磁电机低谐波设计方法综述[J]. 中国电机工程学报, 2020, 40(增刊1): 272-280. Zheng Junqiang, Zhao Wenxiang, Ji Jinghua, et al.Review on design methods of low harmonics of fractional-slot concentrated-windings permanent- magnet machine[J]. Proceedings of the CSEE, 2020, 40(S1): 272-280. [16] 诸自强, 褚文强. 冻结磁导率先进技术及其在高性能电机研发中的应用(英文)[J]. 电工技术学报, 2016, 31(20): 13-29. Zhu Ziqiang, Chu Wenqiang.Advanced frozen per- meability technique and applications in developing high performance electrical machines[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 13-29. [17] Jiang Min, Zhu Xiaoyong, Xiang Zixuan, et al.Suppression of torque ripple of a flux-switching permanent magnet motor in perspective of flux- modulation principle[J]. IEEE Transactions on Trans- portation Electrification, 2022, 8(1): 1116-1127. [18] Shao Lingyun, Hua Wei, Cheng Ming.Investigation on phase shift between multiple-winding sets in multi- phase flux-switching permanent magnet machines[C]// 2015 IEEE Energy Conversion Congress and Expo- sition (ECCE), Montreal, QC, Canada, 2015: 6942-6947. [19] Zhao Wenxiang, Sun Yuhua, Ji Jinghua, et al.Phase shift technique to improve torque of synchronous reluctance machines with dual M-phase windings[J]. IEEE Transactions on Industrial Electronics, 2022, 69(1): 5-17. [20] Chen Xiao, Wang Jiabin, Patel V I.A generic approach to reduction of magnetomotive force harmonics in permanent-magnet machines with con- centrated multiple three-phase windings[J]. IEEE Transactions on Magnetics, 2014, 50(11): 1-4. [21] Zheng Ping, Wu Fan, Lei Yu, et al.Investigation of a novel 24-slot/14-pole six-phase fault-tolerant modular permanent-magnet In-wheel motor for electric vehicles[J]. Energies, 2013, 6(10): 4980-5002. [22] Zhang Gan, Hua Wei, Han Peng.Quantitative evaluation of the topologies and electromagnetic performances of dual-three-phase flux-switching machines[J]. IEEE Transactions on Industrial Elec- tronics, 2018, 65(11): 9157-9167. [23] Barcaro M, Bianchi N, Magnussen F.Analysis and tests of a dual three-phase 12-slot 10-pole permanent- magnet motor[J]. IEEE Transactions on Industry Applications, 2010, 46(6): 2355-2362. [24] 蒋钱, 卢琴芬, 李焱鑫. 双三相永磁直线同步电机的推力波动及抑制[J]. 电工技术学报, 2021, 36(5): 883-892. Jiang Qian, Lu Qinfen, Li Yanxin.Thrust ripple and depression method of dual three-phase permanent magnet linear synchronous motors[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 883-892. [25] Guo Liyan, Xu Jiaqi, Wu Shuang, et al.Analysis and design of dual three-phase fractional-slot permanent magnet motor with low space harmonic[J]. IEEE Transactions on Magnetics, 2022, 58(1): 1-12. [26] Barcaro M, Bianchi N, Magnussen F.Six-phase supply feasibility using a PM fractional-slot dual winding machine[J]. IEEE Transactions on Industry Applications, 2011, 47(5): 2042-2050. [27] Xu Peilin, Feng Jianhua, Guo Siyuan, et al.Analysis of dual three-phase permanent-magnet synchronous machines with different angle displacements[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3): 1941-1954. [28] 高闯, 赵文祥, 吉敬华, 等. 低谐波双三相永磁同步电机及其容错控制[J]. 电工技术学报, 2017, 32(增刊1): 124-130. Gao Chuang, Zhao Wenxiang, Ji Jinghua, et al.Low harmonic dual three-phase permanent magnet syn- chronous motor and fault-tolerant control[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(S1): 124-130. [29] Du Yidong, Wu Lijian, Lyu Zekai, et al.Influence of start rotor position on three-phase short-circuit current in dual three-phase surface-mounted PM machines[J]. IEEE Transactions on Industrial Elec- tronics, 2022, 69(5): 4419-4430. [30] Cheng Luming, Sui Yi, Zheng Ping, et al.Investi- gation of low space harmonic six-phase PMSM with FSCWS for electric vehicle applications[C]//2017 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Harbin, China, 2017: 1-5. [31] 蒋栋, 沈泽微, 刘自程, 等. 电力推进系统电力电子噪声的主动抑制技术进展[J]. 中国电机工程学报, 2020, 40(16): 5291-5302. Jiang Dong, Shen Zewei, Liu Zicheng, et al.Progress in active mitigation technologies of power electronics noise for electrical propulsion system[J]. Proceedings of the CSEE, 2020, 40(16): 5291-5302. [32] Abdel-Khalik A S, Ahmed S, Massoud A M. A six- phase 24-slot/10-pole permanent-magnet machine with low space harmonics for electric vehicle appli- cations[J]. IEEE Transactions on Magnetics, 2016, 52(6): 1-10. [33] 何勇. 低短路电流双三相永磁同步发电机的设计与分析[D]. 镇江: 江苏大学, 2021. [34] 郑萍, 王勃, 吴帆, 等. 电动汽车用双三相永磁同步电机饱和电感特性分析及计算方法[J]. 电工技术学报, 2013, 28(7): 19-25. Zheng Ping, Wang Bo, Wu Fan, et al.Analysis and calculation method of saturated inductance of a dual- three phase permanent-magnet synchronous machine for electric vehicles[J]. Transactions of China Elec- trotechnical Society, 2013, 28(7): 19-25. [35] Xu Peilin, Zhu Z Q, Shao Bo, et al.Analysis of dual 3-phase fractional-slot concentrated winding PM synchronous machines with different angle dis- placements[C]//2019 IEEE Energy Conversion Con- gress and Exposition (ECCE), Baltimore, MD, USA, 2019: 5616-5623. [36] Park J, Bianchini C, Bellini A, et al.Experiment- based performance analysis for dual three-phase synchronous reluctance motor according to different winding configurations[C]//2020 International Sym- posium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Sorrento, Italy, 2020: 478-483. [37] Huang Jiaxuan, Sui Yi, Yin Zuosheng, et al.A novel high torque density dual three-phase PMSM with low space harmonic content[J]. IEEE Transactions on Magnetics, 2022, 58(8): 1-7. [38] Zhang Zhiwei.Dual three phase rare-earth free spoke-type permanent magnet synchronous traction motor using ferrite magnets[C]//2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 2020: 1814-1821. [39] Zhu Shengdao, Zhao Wenxiang, Liu Guohai, et al.Effect of phase shift angle on radial force and vibration behavior in dual three-phase PMSM[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4): 2988-2998. [40] Dajaku G, Gerling D.A novel 24-slots/10-poles winding topology for electric machines[C]//2011 IEEE International Electric Machines & Drives Conference (IEMDC), Niagara Falls, ON, Canada, 2011: 65-70. [41] Demir Y, Aydin M.A novel dual three-phase permanent magnet synchronous motor with asym- metric stator winding[J]. IEEE Transactions on Magnetics, 2016, 52(7): 1-5. [42] Demir Y, Aydin M.A novel asymmetric and unconventional stator winding configuration and placement for a dual three-phase surface PM motor[J]. IEEE Transactions on Magnetics, 2017, 53(11): 1-5. [43] Zhao Wenxiang, Zheng Junqiang, Ji Jinghua, et al.Star and delta hybrid connection of a FSCW PM machine for low space harmonics[J]. IEEE Transa- ctions on Industrial Electronics, 2018, 65(12): 9266-9279. [44] 陈浈斐, 汤俊, 马宏忠, 等. 星-三角接法的多层绕组分数槽永磁电机谐波磁动势分析[J]. 中国电机工程学报, 2021, 41(17): 6060-6071. Chen Zhenfei, Tang Jun, Ma Hongzhong, et al.Harmonic magnetomotive force analysis of multilayer- winding FSCW-PM machine with star-delta hybrid connection[J]. Proceedings of the CSEE, 2021, 41(17): 6060-6071. [45] 邵凌云. 十二相磁通切换永磁风力发电机设计与分析[D]. 南京: 东南大学, 2018. [46] Shao Lingyun, Hua Wei, Zhu Z Q, et al.Investigation on phase shift between multiple multiphase windings in flux-switching permanent magnet machines[J]. IEEE Transactions on Industry Applications, 2017, 53(3): 1958-1970. [47] Scuiller F, Charpentier J F, Semail E.Multi-star multi-phase winding for a high power naval propulsion machine with low ripple torques and high fault tolerant ability[C]//2010 IEEE Vehicle Power and Propulsion Conference, Lille, France, 2011: 1-5. [48] 马中. 十二相低速永磁同步电动机电磁设计与分析[D]. 天津: 天津大学, 2016. [49] Abdel-Khalik A S, Ahmed S, Massoud A M. Low space harmonics cancelation in double-layer frac- tional slot winding using dual multiphase winding[J]. IEEE Transactions on Magnetics, 2015, 51(5): 1-10. [50] Wang Jin, Qu Ronghai, Liu Yingzhen.Comparison study of superconducting generators with multiphase armature windings for large-scale direct-drive wind turbines[J]. IEEE Transactions on Applied Super- conductivity, 2013, 23(3): 5201005. [51] Chen Xiao, Wang Jiabin, Patel V I, et al.A nine- phase 18-slot 14-pole interior permanent magnet machine with low space harmonics for electric vehicle applications[J]. IEEE Transactions on Energy Con- version, 2016, 31(3): 860-871. [52] Yang H, Ademi S, McMahon R A. Comparative study on multiple three-phase permanent magnet motors in fault tolerant electric power steering application[C/OL]// The 10th International Conference on Power Elec- tronics, Machines and Drives (PEMD2020), Online Conference, DOI: 10.1049/icp.2021.0983. [53] 吴新振, 王东, 郭云珺, 等. 多相电机定子绕组组合模式对磁动势与参数的影响[J]. 中国电机工程学报, 2014, 34(18): 2944-2951. Wu Xinzhen, Wang Dong, Guo Yunjun, et al.Effect of stator winding combination modes for multiphase electric machines on MMFs and parameters[J]. Pro- ceedings of the CSEE, 2014, 34(18): 2944-2951. [54] 王东, 吴新振, 马伟明, 等. 非正弦供电十五相感应电机磁路计算方法[J]. 中国电机工程学报, 2009, 29(12): 58-64. Wang Dong, Wu Xinzhen, Ma Weiming, et al.Magnetic circuit calculation of fifteen-phase indu- ction motor with non-sinusoidal supply[J]. Pro- ceedings of the CSEE, 2009, 29(12): 58-64. [55] 王东, 吴新振, 马伟明, 等. 非正弦供电十五相感应电机气隙磁势分析[J]. 中国电机工程学报, 2009, 29(15): 88-94. Wang Dong, Wu Xinzhen, Ma Weiming, et al.Air-gap MMF analysis of fifteen-phase induction motor with non-sinusoidal supply[J]. Proceedings of the CSEE, 2009, 29(15): 88-94. [56] 王东, 吴新振, 马伟明, 等. 非正弦供电十五相感应电机定子漏抗计算[J]. 中国电机工程学报, 2010, 30(6): 41-47. Wang Dong, Wu Xinzhen, Ma Weiming, et al.Calculation of stator leakage reactances of fifteen- phase induction motor with non-sinusoidal supply[J]. Proceedings of the CSEE, 2010, 30(6): 41-47. [57] 王东, 吴新振, 郭云珺, 等. 非正弦供电十五相感应电机谐波电压确定[J]. 中国电机工程学报, 2012, 32(24): 126-133, 20. Wang Dong, Wu Xinzhen, Guo Yunjun, et al.Determination of harmonic voltages for fifteen-phase induction motors with non-sinusoidal supply[J]. Pro- ceedings of the CSEE, 2012, 32(24): 126-133, 20. [58] 王东, 吴新振, 郭云珺, 等. 非正弦供电十五相感应电机的电动势计算[J]. 中国电机工程学报, 2013, 33(9): 129-137. Wang Dong, Wu Xinzhen, Guo Yunjun, et al.Electromotive force calculation of fifteen-phase induction motors with non-sinusoidal supply[J]. Proceedings of the CSEE, 2013, 33(9): 129-137. [59] 匡志. 全电飞机用十五相永磁同步电机驱动控制系统的研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. [60] 方程, 许海平, 薛劭申, 等. 直驱型多相永磁同步电机转矩脉动及损耗特性[J]. 电工技术学报, 2014, 29(5): 149-159. Fang Cheng, Xu Haiping, Xue Shaoshen, et al.Torque ripple and losses of direct-drive multi-phase per- manent magnet synchronous machines[J]. Transa- ctions of China Electrotechnical Society, 2014, 29(5): 149-159. [61] 赵品志. 基于FPGA的十五相PMSM矢量控制系统的研究[D]. 哈尔滨: 哈尔滨工业大学, 2007. [62] Lyra R O C, Lipo T A. Torque density improvement in a six-phase induction motor with third harmonic current injection[J]. IEEE Transactions on Industry Applications, 2002, 38(5): 1351-1360. [63] Wang Kai, Zhu Z Q, Ren Yuan, et al.Torque improvement of dual three-phase permanent-magnet machine with third-harmonic current injection[J]. IEEE Transactions on Industrial Electronics, 2015, 62(11): 6833-6844. [64] Wang Kai, Zhang Jianye, Gu Ziyuan, et al.Torque improvement of dual three-phase permanent magnet machine using zero sequence components[J]. IEEE Transactions on Magnetics, 2017, 53(11): 1-4. [65] Hu Yashan, Zhu Z Q, Odavic M.Torque capability enhancement of dual three-phase PMSM drive with fifth and seventh current harmonics injection[C]// 2016 XXII International Conference on Electrical Machines (ICEM), Lausanne, Switzerland, 2016: 599-605. [66] Hu Yashan, Huang Keyuan, Li Xuefei, et al.Torque enhancement of dual three-phase PMSM by harmonic injection[J]. IET Electric Power Applications, 2020, 14(9): 1735-1744. [67] Zeng Yu, Cheng Ming, Liu Guohai, et al.Effects of magnet shape on torque capability of surface-mounted permanent magnet machine for servo applications[J]. IEEE Transactions on Industrial Electronics, 2020, 67(4): 2977-2990. [68] Li Yong, Zou Jibin, Lu Yongping.Optimum design of magnet shape in permanent-magnet synchronous motors[J]. IEEE Transactions on Magnetics, 2003, 39(6): 3523-3526. [69] Wang Kai.Effects of harmonics into magnet shape and current of dual three-phase permanent magnet machine on output torque capability[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11): 8758-8767. [70] Akay A, Lefley P.Research on torque ripple under healthy and open-circuit fault-tolerant conditions in a PM multiphase machine[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(4): 349-359. [71] Li Feng, Wang Kai, Zhang Jianya, et al.Effect of angle displacements on electromagnetic performance of dual three-phase consequent-pole permanent magnet machine[J]. IET Electric Power Applications, 2020, 14(7): 1177-1185. [72] Sun Yuhua, Zhao Wenxiang, Ji Jinghua, et al.Effect of phase shift on inductance and short-circuit current in dual three-phase 48-slot/22-pole permanent-magnet machines[J]. IEEE Transactions on Industrial Elec- tronics, 2022, 69(2): 1135-1145. [73] Song Zaixin, Liu Chunhua, Chai Feng, et al.Modular design of an efficient permanent magnet vernier machine[J]. IEEE Transactions on Magnetics, 2020, 56(2): 1-6. [74] 陆嘉伟, 张卓然, 李进才, 等. 电推进飞机移相双绕组永磁电机特性分析[J]. 航空学报, 2022, 43(5): 410-419. Lu Jiawei, Zhang Zhuoran, Li Jincai, et al.Chara- cteristic analysis of dual-winding permanent magnet synchronous machine with phase-shifted windings for electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 410-419. [75] Li Yanxin, Zhu Ziqiang, Wu Ximeng, et al.Com- parative study of modular dual 3-phase permanent magnet machines with overlapping/non-overlapping windings[J]. IEEE Transactions on Industry Appli- cations, 2019, 55(4): 3566-3576. [76] Li Yanxin, Zhu Z Q, Thomas A.Generic slot and pole number combinations for novel modular permanent magnet dual 3-phase machines with redundant teeth[J]. IEEE Transactions on Energy Conversion, 2020, 35(3): 1676-1687. [77] Lu Yang, Li Jian, Qu Ronghai, et al.Electromagnetic force and vibration study on axial flux permanent magnet synchronous machines with dual three-phase windings[J]. IEEE Transactions on Industrial Elec- tronics, 2020, 67(1): 115-125. [78] Wang Bo, Wang Jiabin, Griffo A, et al.Experimental assessments of a triple redundant nine-phase fault- tolerant PMA SynRM drive[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 772-783. [79] Wang Bo, Luo Linglu, Fu Weinong, et al.Study on the PWM ripple current based turn fault detection for interior PM machine[J]. IEEE Transactions on Transportation Electrification, 2021, 7(3): 1537-1547. [80] Wang Bo, Hu Jiapeng, Hua Wei, et al.Fault operation analysis of a triple-redundant three-phase PMA- SynRM for EV application[J]. IEEE Transactions on Transportation Electrification, 2021, 7(1): 183-192. [81] Xu Meimei, Liu Guohai, Chen Qian, et al.Design and optimization of a fault tolerant modular permanent magnet assisted synchronous reluctance motor with torque ripple minimization[J]. IEEE Transactions on Industrial Electronics, 2021, 68(9): 8519-8530. [82] Xu Meimei, Liu Guohai, Chen Qian, et al.Torque calculation of stator modular PMa-SynRM with asymmetric design for electric vehicles[J]. IEEE Transactions on Transportation Electrification, 2021, 7(1): 202-213. [83] Tang Yue, Chai Feng, Chen Lei.Investigation of open-circuit fault-tolerant strategy in a modular permanent magnet synchronous in-wheel motor based on electromagnetic-thermal analysis[J]. IEEE Transa- ctions on Transportation Electrification, 2022, 8(1): 1085-1093. [84] 张端倪, 黄守道. 十八相电机模块化设计及改进的模型预测控制[J]. 微特电机, 2020, 48(5): 44-47, 51. Zhang Duanni, Huang Shoudao.Modular design and improved model predictive control of 18-phase motor[J]. Small & Special Electrical Machines, 2020, 48(5): 44-47, 51. |
|
|
|