|
|
Weak Robustness Analysis of Close Subsynchronous Oscillation Modes' Participation Factors in Multiple Direct-Drive Wind Turbines with the VSC-HVDC System |
Shao Bingbing1, Zhao Zheng2, Xiao Qi1, Yang Zhiqing1, Meng Xiaoxiao1 |
1. Anhui Province Key Laboratory of Renewable Energy Utilization and Energy Saving Hefei University of Technology Hefei 230009 China; 2. State Grid Economic and Technological Research Institute Co. Ltd Beijing 102209 China |
|
|
Abstract Direct-drive wind farms with the VSC-HVDC (DDWFV) system face the risk of sub-synchronous oscillations (SSOs), and multiple similar permanent magnet synchronous generators (PMSGs) grid-connected system contain multiple close SSO modes. Recently, the strong resonance, weak resonance and open-loop mode resonance when the SSO modes approach were analyzed. However, the research was about the change of SSO modes, while the change of close SSO modes' participation factors (PFs) was rarely studied. Certain research showed that the PF of SSO modes was sensitive to parameter changes, but the phenomenon was not explained theoretically and under which condition does the phenomenon happen was unknown. The PF reflects the participation of system state variables in the SSO modes, which determines the optimal location of damping controllers. Generally, the damping controller is preferred installed on the PMSGs with the largest PF. Therefore, the PF has a great impact on the performance of damping controllers, and it is necessary to reveal the reason why the PFs of close SSOs are sensitive to parameter changes, and appropriate tools need to be proposed to analyze this phenomenon. For the convenience of description, the phenomenon that the PF is sensitive to parameter changes is defined as the PFs weak robustness. Firstly, the dynamic model of the DDWFV is built, which includes the dynamic models of PMSG power generation system, VSC-HVDC, and their interface model. Secondly, the PFs weak robustness phenomenon is presented with the homogeneous wind farms, heterogeneous wind farms and large-scale wind farms. The homogeneous and heterogeneous wind farms are based on the three-machine model, and the large-scale wind farms are based on the 160-machine model. After presenting the PFs weak robustness phenomenon, the PFs weak robustness mechanism is revealed with the matrix perturbation method, which explains the little change of SSO modes and large change of PFs under the parameter perturbation. Thirdly, the PFs weak robustness hazards are presented with the three-machine system. The performances of SSO damping controllers before and after the parameter perturbation are compared, and the results show that the optimal location of damping controllers before the perturbation does not mean the optimal location after the perturbation. Therefore, the parameter perturbation has a great impact on the performance of damping controllers when PFs weak robustness happens. Finally, to reduce the hazards of PFs weak robustness, three methods about the PMSGs design and damping controllers design are proposed. Meanwhile, the design of damping controllers under the perturbation of wind speeds is discussed. The following conclusions can be drawn from the analysis: ① Where there are similar PMSGs, the DDWFV may contain multiple close modes. Under the parameter perturbation, the change of SSO modes is less, while the PFs of close SSO modes experience a great change. ② Under the parameter perturbation, the dominant PMSGs of close SSO modes may change, which affects the optimal location of damping controllers and their damping performances. ③ To reduce the hazards of PFs weak robustness, three methods can be adopted: increasing the differences between the PMSGs and dynamically adjusting the damping controller location according to the numerical solution/analytical solution of the PFs under the parameter perturbation, so as to improve the robustness of SSO damping controllers.
|
Received: 06 September 2022
|
|
|
|
|
[1] 陈剑, 杜文娟, 王海风. 基于对抗式迁移学习的含柔性高压直流输电的风电系统次同步振荡源定位[J]. 电工技术学报, 2021, 36(22): 4703-4715. Chen Jian, Du Wenjuan, Wang Haifeng.Location method of subsynchronous oscillation source in wind power system with VSC-HVDC based on adversarial transfer learning[J]. Transactions of China Electrotechnical Society, 2021, 36(22): 4703-4715. [2] 卢宇, 汪楠楠, 刘鹏, 等. 采用交流耗能的新能源孤岛柔直送出方案及仿真研究[J]. 电气技术, 2022, 23(5): 18-24. Lu Yu, Wang Nannan, Liu Peng, et al.Study on the scheme of islanded renewable energy delivered by VSC-HVDC using alternating current chopper[J]. Electrical Engineering, 2022, 23(5): 18-24. [3] 尹聪琦, 谢小荣, 刘辉, 等. 柔性直流输电系统振荡现象分析与控制方法综述[J]. 电网技术, 2018, 42(4): 1117-1123. Yin Congqi, Xie Xiaorong, Liu Hui, et al.Analysis and control of the oscillation phenomenon in VSC-HVDC transmission system[J]. Power System Technology, 2018, 42(4): 1117-1123. [4] 王一凡, 赵成勇, 郭春义. 双馈风电场孤岛经模块化多电平换流器直流输电并网系统小信号稳定性分析与振荡抑制方法[J]. 电工技术学报, 2019, 34(10): 2116-2129. Wang Yifan, Zhao Chengyong, Guo Chunyi.Small signal stability and oscillation suppression method for islanded double fed induction generator-based wind farm integrated by modular multilevel converter based HVDC system[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2116-2129. [5] 颜湘武, 常文斐, 崔森, 等. 基于线性自抗扰控制的静止无功补偿器抑制弱交流风电系统次同步振荡策略[J]. 电工技术学报, 2022, 37(11): 2825-2836. Yan Xiangwu, Chang Wenfei, Cui Sen, et al.Sub-synchronous oscillation suppression strategy of weak AC wind power system with static var compensator based on linear active disturbance rejection control[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2825-2836. [6] 刘其辉, 洪晨威, 逄思敏, 等. 基于弹性系数的双馈风电机组控制参数对次同步振荡作用分析及调整方法[J]. 电工技术学报, 2022, 37(14): 3528-3541. Liu Qihui, Hong Chenwei, Pang Simin, et al.Analysis and adjustment method of doubly-fed fan control parameters on subsynchronous oscillation based on impedance elastic sensitivity[J]. Transactions of China Electrotechnical Society, 2022, 37(14): 3528-3541. [7] Shao Bingbing, Zhao Shuqiang, Gao Benfeng, et al.Adequacy of the single-generator equivalent model for stability analysis in wind farms with VSC-HVDC systems[J]. IEEE Transactions on Energy Conversion, 2021, 36(2): 907-918. [8] Kunjumuhammed L P, Pal B C, Gupta R, et al.Stability analysis of a PMSG-based large offshore wind farm connected to a VSC-HVDC[J]. IEEE Transactions on Energy Conversion, 2017, 32(3): 1166-1176. [9] 邵冰冰, 赵书强, 裴继坤, 等. 直驱风电场经VSC-HVDC并网的次同步振荡特性分析[J]. 电网技术, 2019, 43(9): 3344-3355. Shao Bingbing, Zhao Shuqiang, Pei Jikun, et al.Subsynchronous oscillation characteristic analysis of grid-connected DDWFs via VSC-HVDC system[J]. Power System Technology, 2019, 43(9): 3344-3355. [10] Kunjumuhammed L P, Pal B C, Oates C, et al.Electrical oscillations in wind farm systems: analysis and insight based on detailed modeling[J]. IEEE Transactions on Sustainable Energy, 2015, 7(1): 51-62. [11] Koralewicz P, Shah S, Gevorgian V, et al.Impedance analysis and PHIL demonstration of reactive power oscillations in a wind power plant using a 4-MW wind turbine[J]. Frontiers in Energy Research, 2020, 8: 156. [12] 邵冰冰, 赵书强, 高本锋, 等. 多直驱风机经VSC-HVDC并网系统场内/场网次同步振荡特性分析[J]. 中国电机工程学报, 2020, 40(12): 3835-3847. Shao Bingbing, Zhao Shuqiang, Gao Benfeng, et al.Inside-wind-farm/wind-farm-grid sub-synchronous oscillation characteristics analysis in multiple D-PMSGs interfaced with VSC-HVDC system[J]. Proceedings of the CSEE, 2020, 40(12): 3835-3847. [13] 邵冰冰, 赵书强, 高本锋. 基于相似变换理论的直驱风电场经柔直并网系统次同步振荡简化模型[J]. 中国电机工程学报, 2020, 40(15): 4780-4791. Shao Bingbing, Zhao Shuqiang, Gao Benfeng.Simplified model for studying the sub-synchronous oscillation of direct-drive wind farms via VSC-HVDC system based on similar transformation theory[J]. Proceedings of the CSEE, 2020, 40(15): 4780-4791. [14] 苏田宇, 杜文娟, 王海风. 多直驱永磁同步发电机并联风电场次同步阻尼控制器降阶设计方法[J]. 电工技术学报, 2019, 34(1): 116-127. Su Tianyu, Du Wenjuan, Wang Haifeng.A reduced order design method for subsynchronous damping controller of multi-PMSGs parallel wind farm[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 116-127. [15] Williams T, Cheng Xiao.Degrees of controllability and observability for close modes of flexible space structures[J]. IEEE Transactions on Automatic Control, 1999, 44(9): 1791-1795. [16] 徐博侯, 鲍荣浩, 张阿平. 密频系统振动控制的状态估计[J]. 力学学报, 2000, 32(5): 606-612. Xu Bohou, Bao Ronghao, Zhang Aping.State observer in vibration control of closely spaced mode systems[J]. Acta Mechanica Sinica, 2000, 32(5): 606-612. [17] 刘一武, 张洪华, 吴宏鑫. 可控性差的空间密集模态结构的振幅最优控制[J]. 自动化学报, 2002, 28(2): 216-221. Liu Yiwu, Zhang Honghua, Wu Hongxin.An optimal control for closely spaced mode structures with poor controllability[J]. Acta Automatica Sinica, 2002, 28(2): 216-221. [18] Dobson I, Zhang J, Greene S, et al.Is strong modal resonance a precursor to power system oscillations?[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2001, 48(3): 340-349. [19] Dobson I, Barocio E.Perturbations of weakly resonant power system electromechanical modes[C]//2003 IEEE Bologna Power Tech Conference Proceedings, Bologna, Italy, 2004, 1: 8. [20] Du Wenjuan, Chen Xiao, Wang Haifeng.A method of open-loop modal analysis to examine the SSOs in a multi-machine power system with multiple variable-speed wind generators[J]. IEEE Transactions on Power Systems, 2018, 33(4): 4297-4307. [21] 赵书强, 陈慷, 马燕峰, 等. 密集型固有振模电力系统模态不稳定现象研究[J]. 华北电力大学学报(自然科学版), 2011, 38(5): 1-5. Zhao Shuqiang, Chen Kang, Ma Yanfeng, et al.Study on modes instability in electric power system with close modes[J]. Journal of North China Electric Power University (Natural Science Edition), 2011, 38(5): 1-5. [22] 赵书强, 陈慷, 马燕峰, 等. 密集型固有振荡模式电力系统的模态分析[J]. 电力系统自动化, 2011, 35(21): 6-11. Zhao Shuqiang, Chen Kang, Ma Yanfeng, et al.Modal analysis of electric power system with close oscillation modes[J]. Automation of Electric Power Systems, 2011, 35(21): 6-11. [23] 李奕欣, 马燕峰, 赵书强. 识别电力系统密集振荡模式的模态灵敏度方法[J]. 电力系统保护与控制, 2020, 48(8): 106-111. Li Yixin, Ma Yanfeng, Zhao Shuqiang.Modal sensitivity method for identifying close modes in a power system[J]. Power System Protection and Control, 2020, 48(8): 106-111. [24] Wu Meng, Xie Le, Cheng Lin, et al.A study on the impact of wind farm spatial distribution on power system sub-synchronous oscillations[J]. IEEE Transactions on Power Systems, 2016, 31(3): 2154-2162. [25] 吕敬, 蔡旭. 风电场柔性直流并网系统镇定器的频域分析与设计[J]. 中国电机工程学报, 2018, 38(14): 4074-4085, 4313. Lü Jing, Cai Xu.Frequency-domain analysis and design of stabilization controllers for wind farm integration through VSC-HVDC system[J]. Proceedings of the CSEE, 2018, 38(14): 4074-4085, 4313. [26] 盛逸标, 林涛, 陈宝平, 等. 面向新能源外送系统次/超同步振荡的控制器参数协调优化[J]. 电工技术学报, 2019, 34(5): 983-993. Sheng Yibiao, Lin Tao, Chen Baoping, et al.Coordination and optimization of controller parameters for subsynchronous/super-synchronous oscillation in new energy delivery systems[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 983-993. [27] 董晓亮, 田旭, 张勇, 等. 沽源风电场串补输电系统次同步谐振典型事件及影响因素分析[J]. 高电压技术, 2017, 43(1): 321-328. Dong Xiaoliang, Tian Xu, Zhang Yong, et al.Practical SSR incidence and influencing factor analysis of DFIG-based series-compensated transmission system in Guyuan farms[J]. High Voltage Engineering, 2017, 43(1): 321-328. [28] 陈塑寰. 结构动态设计的矩阵摄动理论[M]. 北京: 科学出版社, 1999. [29] Wilkinson J H.The algebraic eigenvalue problem[M]. Oxford: Clarendon Press, 1965 [30] 邵冰冰, 赵书强, 高本锋, 等. 基于反馈线性化滑模控制的直驱风电场经柔直并网系统次同步振荡抑制策略[J]. 中国电机工程学报, 2021, 41(9): 3090-3106. Shao Bingbing, Zhao Shuqiang, Gao Benfeng, et al.Sub-synchronous oscillation mitigation strategy of direct-drive wind farms via VSC-HVDC system based on feedback linearization sliding mode control[J]. Proceedings of the CSEE, 2021, 41(9): 3090-3106. [31] 程时杰, 曹一家, 江全元. 电力系统次同步振荡的理论与方法[M]. 北京: 科学出版社, 2009. [32] 王晨, 寇鹏. 基于卷积神经网络和简单循环单元集成模型的风电场内多风机风速预测[J]. 电工技术学报, 2020, 35(13): 2723-2735. Wang Chen, Kou Peng.Wind speed forecasts of multiple wind turbines in a wind farm based on integration model built by convolutional neural network and simple recurrent unit[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2723-2735. |
|
|
|