|
|
Mechanism Analysis of Effect of Equivalent Proportional Coefficient of Inertia Control of DFIG on Stability of First Swing of Power Angle |
Wang Ke, Qin Wenping, Zhang Yu, Zhu Zhilong, Xue Shaokai |
Shanxi Key Laboratory of Power System Operation and Control Taiyuan University of Technology Taiyuan 030024 China |
|
|
Abstract Compared with traditional synchronous machines, doubly-fed Induction Generator (DFIG) lacks inertial response capability. Therefore, when a large-scale DFIG is connected to a power system suffering from large or small disturbances (three-phase short circuit, sudden load increase, etc.), the system inertial response capability is severely lacking and the problem of transient power angle stability is highlighted. With the continuous improvement of the DFIG virtual inertia control technology, the DFIG can provide dynamic inertia support for the system. Therefore, there is an urgent necessity to carry out research on the mechanism of the effect of the DFIG's virtual inertia on the first swing stability of the system power angle. To address these issues, this paper proposes a mechanism analysis method for the effect of equivalent proportional coefficient of virtual inertia control of DFIG on stability of first swing of power angle. Firstly, the equivalent model of two regional inertia centers is derived, and the influence of DFIG virtual inertia on the rotor motion equations of the two regions is analyzed. Secondly, from the perspective of the transient energy of the system, the influence of the equivalent proportional coefficient of virtual inertia control of DFIG in the two regions on the transient energy during the acceleration and deceleration of the system is studied when the swing direction of system power angle are different and the swing direction of influence mechanism on the first swing stability of system is further studied. Finally, the stability of the system was evaluated by the maximum deviation of the system power angle and a simulation model of the two-region interconnection system was built in PSASP to verify the proposed theory. Considering the DFIG in sending and receiving ends with additional inertia control, the following conclusions can be drawn from the simulation analysis: ①When a three-phase short circuit fault occurs in the system, the power angle of the system swings in the positive direction, and the DFIG inertia response changes the transient energy during system deceleration. If the equivalent proportional coefficient of the DFIG's virtual inertia control link is greater than zero, the stability of the system power angle first swing is weakened, and the absolute value of the equivalent proportional coefficient of the DFIG's virtual inertia control link is reduced, which is conducive to the stability of the system power angle first swing, otherwise, it is not conducive to the stability of the system power angle first swing. ②When the system load suddenly increases, the power angle of the system swings in the opposite direction, and the DFIG inertia response changes the transient energy during the system acceleration and deceleration. If the equivalent proportional coefficient of the DFIG's virtual inertia control link is greater than zero, the stability of the system power angle first swing is enhanced, and the absolute value of the equivalent proportional coefficient of the DFIG's virtual inertia control link is increased, which is conducive to the stability of the system power angle first swing, otherwise, it is not conducive to the stability of the system power angle first swing.
|
Received: 17 August 2021
|
|
|
|
|
[1] Liu Juelin, Yang Zhifang, Yu Juan, et al.Coordinated control parameter setting of DFIG wind farms with virtual inertia control[J]. International Journal of Electrical Power & Energy Systems, 2020, 122(12): 106167. [2] 章艳, 高晗, 张萌. 不同虚拟同步机控制下双馈风机系统频率响应差异研究[J]. 电工技术学报, 2020, 35(13): 2889-2900. Zhang Yan, Gao Han, Zhang Meng.Research on frequency response difference of doubly-fed induction generator system controlled by different virtual synchronous generator controls[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2889-2900. [3] 赵晶晶, 李敏, 何欣芹, 等. 基于限转矩控制的风储联合调频控制策略[J]. 电工技术学报, 2019, 34(23): 4982-4990. Zhao Jingjing, Li Min, He Xinqin, et al.Coordinated control strategy of wind power and energy storage in frequency regulation based on torque limit control[J]. Transactions of China Electrotechnical Society, 2019, 34(23): 4982-4990. [4] 颜湘武, 宋子君, 崔森, 等. 基于变功率点跟踪和超级电容器储能协调控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2020, 35(3): 530-541. Yan Xiangwu, Song Zijun, Cui Sen, et al.Primary frequency modulation strategy of doubly-fed induction generator based on variable power point tracking and coordinated control of supercapacitor energy storage[J]. Transactions of China Electrote-chnical Society, 2020, 35(3): 530-541. [5] 颜湘武, 王德胜, 杨琳琳, 等. 直驱风机惯量支撑与一次调频协调控制策略[J]. 电工技术学报, 2021, 36(15): 3282-3292. Yan Xiangwu, Wang Desheng, Yang Linlin, et al.Coordinated control strategy of inertia support and primary frequency regulation of PMSG[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3282-3292. [6] 郝正航. 双馈风电机组的暂态行为及其对电力系统稳定性影响[D]. 天津: 天津大学, 2011. [7] 张祥宇, 王爽, 王毅, 等. 含可控惯量发电系统的功角暂态稳定分析与惯性控制策略[J]. 电力建设, 2018, 39(1): 106-112. Zhang Xiangyu, Wang Shuang, Wang Yi, et al.Power angle transient stability analysis and inertia control strategy of power generation system with controllable inertia[J]. Electric Power Construction, 2018, 39(1): 106-112. [8] 刘斯伟. 并网双馈风电机组对电力系统暂态稳定性的影响机理研究[D]. 北京: 华北电力大学(北京), 2016. [9] 赵振元, 陈维荣, 戴朝华, 等. 系统惯性时间常数对互联电网暂态稳定水平的影响[J]. 电网技术, 2012, 36(1): 102-107. Zhao Zhenyuan, Chen Weirong, Dai Chaohua, et al.Influence of system inertia time constant on transient stability level of interconnected power grid[J]. Power Syetem Technology, 2012, 36(1): 102-107. [10] 张明理, 徐建源, 李佳珏. 含高渗透率风电的送端系统电网暂态稳定研究[J]. 电网技术, 2013, 37(3): 740-745. Zhang Mingli, Xu Jianyuan, Li Jiajue.Research on transient stability of sending power grid containing high proportion of wind power[J]. Power Syetem Technology, 2013, 37(3): 740-745. [11] 王哲. 惯量可控发电机组对电力系统动态特性影响分析[D]. 北京: 华北电力大学(北京), 2019. [12] Kimbark E W.Power system stability: synchronous machines[J]. New York: John Wiley, 1948. [13] 罗远翔, 杨仁刚, 蔡国伟, 等. 大容量风电接入系统对网络暂态能量的影响[J]. 电力系统及其自动化学报, 2014, 28(1): 76-80. Luo Yuanxiang, Yang Rengang, Cai Guowei, et al.Influence of large capacity wind power access system on network transient energy[J]. Proceedings of the CSU-EPSA, 2014, 28(1): 76-80. [14] 姜惠兰, 姜哲, 李天鹏, 等. 风机转子撬棒投切对电力系统暂态稳定性的影响[J]. 电网技术, 2016, 40(8): 2383-2388. Jiang Huilan, Jiang Zhe, Li Tianpeng, et al.Impact of rotor crowbar switching on transient stability of power system[J]. Power System Technology, 2016, 40(8): 2383-2388. [15] 吴玉璋. 风电场接入对电力系统暂态稳定影响研究[D]. 天津: 天津大学, 2017. [16] 罗远翔, 杨仁刚, 刘铖, 等. TCSC提高大容量风电接入系统的稳定性及控制策略[J]. 电测与仪表, 2014(4): 35-39. Luo Yuanxiang, Yang Rengang, Liu Cheng, et al.Control strategy of TCSC for stability improvement in power systems integrated with large scale wind farms[J]. Electrical Measurement & Instrumentation, 2014(4): 35-39. [17] 周明, 董哲, 李洪宇, 等. 风机故障后有功控制对系统暂态功角失稳的影响机理(英文)[J]. 电网技术, 2019, 43(4): 1280-1293. Zhou Ming, Dong Zhe, Li Hongyu, et al.Influence mechanism of active power control on transient angle instability of wind turbine system after fault[J]. Power System Technology, 2019, 43(4): 1280-1293. [18] 于珍, 沈沉, 张雪敏. 双馈风机故障穿越后功率恢复速率对系统暂态稳定的影响分析[J]. 中国电机工程学报, 2018, 38(13): 3781-3791, 4019. Yu Zhen, Shen Shen, Zhang Xuemin.Influence of power recovery rate on transient stability of doubly-fed fan after fault crossing[J]. Proceedings of the CSEE, 2018, 38(13): 3781-3791, 4019. [19] 牟澎涛, 赵冬梅, 王嘉成. 大规模风电接入对系统功角稳定影响的机理分析[J]. 中国电机工程学报, 2017, 37(5): 1325-1334. Mou Pengtao, Zhao Dongmei, Wang Jiacheng.Mechanism analysis of influence of large-scale wind power access on system power angle stability[J]. Proceedings of the CSEE, 2017, 37(5): 1325-1334. [20] 林俐, 杨以涵. 基于扩展等面积定则的含大规模风电场电力系统暂态稳定性分析[J]. 电力系统保护与控制, 2012, 40(12): 105-110, 115. Lin Li, Yang Yihan.Transient stability analysis of power system with large scale wind farm based on extended equal area rule[J]. Power System Protection and Control, 2012, 40(12): 105-110, 115. [21] 李世春, 邓长虹, 龙志君, 等. 风电场等效虚拟惯性时间常数计算[J]. 电力系统自动化, 2016, 40(7): 22-29. Li Shichun, Deng Changhong, Long Zhijun, et al.Calculation of equivalent virtual inertia time constant of wind farm[J]. Automation of Electric Power Systems, 2016, 40(7): 22-29. [22] 刘皓明, 任秋业, 张占奎, 等. 双馈风机等效惯性时间常数计算及转差率反馈惯量控制策略[J]. 电力系统自动化, 2018, 42(17): 49-57. Liu Haoming, Ren Qiuye, Zhang Zhankui, et al.Calculation of equivalent inertia time constant and control strategy of slight feedback inertia for double-fed fan[J]. Automation of Electric Power Systems, 2018, 42(17): 49-57. [23] 李春艳, 孙元章, 彭晓涛, 等. 采用广域测量信息反馈的广域PSS参数设计[J]. 电力系统自动化, 2009, 33(18): 6-11. Li Chunyan, Sun Yuanzhang, Peng Xiaotao, et al.Wide-area PSS parameter design using wide-area measurement feedback[J]. Automation of Electric Power Systems, 2009, 33(18): 6-11. [24] Zhang Xiangyu, Zhu Zhengzhen, Fu Yuan, et al. Multi-objective virtual inertia control of renewable power generator for transient stability improvement in interconnected power system[J]. International Journal of Electrical Power and Energy Systems, 2020, 117: 105641.1-105641.12. [25] Shao Haoshu, Cai Xu, Zhou Dangsheng, et al.Equivalent modeling and comprehensive evaluation of inertia emulation control strategy for DFIG wind turbine generator[C]//2019 10th International Conference on Power Electronics and ECCE Asia, Busan, 2019: 3164-3170. [26] 袁辉, 宋晓喆, 孙福寿, 等. 弱电网中低电压穿越控制策略导致的双馈风机失稳机理分析[J]. 电力自动化设备, 2020, 40(9): 50-58. Yuan Hui, Song Xiaozhe, Sun Fushou, et al.Analysis on instability mechanism of double-fed fan caused by low voltage crossing control strategy in weak power grid[J]. Electric Power Automation Equipment, 2020, 40(9): 50-58. [27] 张磊, 张闯, 罗毅, 等. 电网友好型双馈感应发电机的暂态协调控制策略[J]. 电力系统自动化, 2019, 43(12): 44-50, 112. Zhang lei, Zhang Chuang, Luo Yi, et al. Transient coordinated control strategy of grid friendly double-fed induction generator[J]. Automation of Electric Power Systems, 2019, 43(12): 44-50, 112. |
|
|
|