|
|
Multiple-Degree-of-Freedom Control and Capacitor Voltage Balancing Method of Modular Multilevel Resonant Converter |
Sheng Jing1, Chen Cong1, Xiang Xin1, Li Chushan1,2, Li Wuhua1 |
1. College of Electrical Engineering Zhejiang University Hangzhou 310027 China; 2. Zhejiang University-University of Illinois at Urbana-Champaign Institute Haining 314400 China |
|
|
Abstract Modular multilevel resonant converters (MMRC) have attracted many studies in the medium voltage area due to the advantages of modular multilevel topology and LLC resonant circuits. However, in the wide input range field, more in-depth research still needs to be conducted on the efficient regulation of this topology. This paper proposed a multi-degree-of-freedom (DOF) voltage regulation control method for a modular multilevel resonant converter. Firstly, the voltage regulation effects and characteristics of switching frequency and modulation index are analyzed. Then, combining both frequency regulation and modulation index control, a wide-range voltage regulation method with multi-degree-of-freedom is proposed, and the hardware parameters and control parameters are designed in detail. Moreover, a supervised capacitor voltage method for ripple suppression is proposed to reveal large capacitor ripple issue under modulation index control. Finally, the effectiveness of the proposed method is verified by a laboratory prototype with a wide input voltage of 8~16kV and an output power of 60kW. The full-load efficiency of the full input voltage range is greater than 96%, and the submodule capacitor voltage ripple is reduced by 60%.
|
Received: 31 May 2022
|
|
|
|
|
[1] 贺悝, 李勇, 曹一家, 等. 考虑分布式储能参与的直流配电网电压柔性控制策略[J]. 电工技术学报, 2017, 32(10): 101-110. He Li, Li Yong, Cao Yijia, et al.Flexible voltage control strategy of DC distribution network con- sidering distributed energy storage[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 101-110. [2] 曾嵘, 赵宇明, 赵彪, 等. 直流配用电关键技术研究与应用展望[J]. 中国电机工程学报, 2018, 38(23): 6791-6801. Zeng Rong, Zhao Yuming, Zhao Biao, et al.A prospective look on research and application of DC power distribution technology[J]. Proceedings of the CSEE, 2018, 38(23): 6791-6801. [3] 韩民晓, 谢文强, 曹文远, 等. 中压直流配电网应用场景与系统设计[J]. 电力系统自动化, 2019, 43(23): 2-11. Han Minxiao, Xie Wenqiang, Cao Wenyuan, et al.Application scenarios and system design of medium- voltage DC distribution network[J]. Automation of Electric Power Systems, 2019, 43(23): 2-11. [4] 林霖, 裴忠晨, 蔡国伟, 等. 混合式隔离型模块化多电平变换器[J]. 电工技术学报, 2021, 36(16): 3319-3330. Lin Lin, Pei Zhongchen, Cai Guowei, et al.Hybrid isolated modular multilevel monverter[J]. Transa- ctions of China Electrotechnical Society, 2021, 36(16): 3319-3330. [5] 刘建强, 赵楠, 孙帮成, 等. 基于LLC谐振变换器的电力电子牵引变压器控制策略研究[J]. 电工技术学报, 2019, 34(16): 3333-3344. Liu Jianqiang, Zhao Nan, Sun Bangcheng, et al.Research on control strategy of power electronic traction transformer based on LLC resonant con- verter[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3333-3344. [6] Lu Zhebie, Li Chengmin, Zhu Ankang, et al.Medium voltage soft switching DC/DC converter with series connected SiC MOSFETs[J]. IEEE Transactions on Power Electronics, 2021, 36(2): 1451-1462. [7] 黄先进, 赵鹃, 游小杰. 一种基于输入串联输出并联移相全桥变换器的改进交错控制方法[J]. 电工技术学报, 2020, 35(增刊1): 81-90. Huang Xianjin, Zhao Juan, You Xiaojie.An improved interlace control method based on input series output parallel phase-shifted full-bridge converter[J]. Transa- ctions of China Electrotechnical Society, 2020, 35(S1): 81-90. [8] 杨博, 葛琼璇, 赵鲁, 等. 基于输入串联输出并联的双向全桥串联谐振DC-DC变换器系统控制策略研究[J]. 电工技术学报, 2020, 35(12): 2574-2584. Yang Bo, Ge Qiongxuan, Zhao Lu, et al.Control strategy of dual bridge series resonant DC-DC converter system based on input series output parallel connection[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2574-2584. [9] 袁栋, 袁宇波, 贾勇勇, 等. 一种混合型输入串联输出并联直流变压器[J]. 电网技术, 2021, 45(1): 179-188. Yuan Dong, Yuan Yubo, Jia Yongyong, et al.An ISOP hybrid DC transformer[J]. Power System Technology, 2021, 45(1): 179-188. [10] 孟涛, 安彦桦, 贲洪奇. 输入串联型变换器集成变压器的分布电容影响机制与绕组布局方法[J]. 电工技术学报, 2021, 36(24): 5272-5282. Meng Tao, An Yanhua, Ben Hongqi.Stray capaci- tances influences and windings layout of the integrated-transformer in the input-series converter[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5272-5282. [11] Zhao Biao, Song Qiang, Li Jianguo, et al.Com- parative analysis of multilevel high frequency link and multilevel DC link DC-DC transformers based on MMC and dual-active bridge for MVDC appli- cation[J]. IEEE Transactions on Power Electronics, 2018, 33(3): 2035-2049. [12] 王婷, 王广柱, 张勋. 基于模块化多电平矩阵变换器的电力电子变压器控制策略[J]. 电工技术学报, 2016, 31(18): 108-115. Wang Ting, Wang Guangzhu, Zhang Xun.The control strategy of power electronic transformer based on modular multilevel matrix converters[J]. Transactions of China Electrotechnical Society, 2016, 31(18): 108-115. [13] Xin Xiang, Zhang Xiaotian, Chaffey G P, et al.An isolated resonant mode modular converter with flexible modulation and variety of configurations for MVDC application[J]. IEEE Transactions on Power Delivery, 2018, 33(1): 508-519. [14] 李雨岑. 谐振型中低压直流变压器的均流技术和拓扑研究[D]. 杭州: 浙江大学, 2020. [15] Zhao Biao, Song Qiang, Li Jianguo, et al.High frequency link modulation methodology of DC-DC transformer based on modular multilevel converter for HVDC application: comprehensive analysis and experimental verification[J]. IEEE Transactions on Power Electronics, 2017, 32(5): 3413-3424. [16] 李风华, 路艳国, 王海斌, 等. 海底观测网的研究进展与发展趋势[J]. 中国科学院院刊, 2019, 34(3): 321-330. Li Fenghua, Lu Yanguo, Wang Haibin, et al.Research progress and development trend of seafloor obser- vation network[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(3): 321-330. [17] Lu Feng, Zhou Huaiyang, Yue Jiguang, et al.Design of an undersea power system for the East China Sea experimental cabled seafloor observatory[C]//2013 OCEANS-San Diego, San Diego, CA, USA, 2013: 1-6. [18] Gowaid I A, Adam G P, Ahmed S, et al.Analysis and design of a modular multilevel converter with trape- zoidal modulation for medium and high voltage DC-DC transformers[J]. IEEE Transactions on Power Electronics, 2015, 30(10): 5439-5457. [19] Zhao Biao, Song Qiang, Li Jianguo, et al.Modular multilevel high-frequency-link DC transformer based on dual active phase-shift principle for medium- voltage DC power distribution application[J]. IEEE Transactions on Power Electronics, 2017, 32(3): 1779-1791. [20] Zhang Jianjia, Shao Shuai, Li Yucen, et al.A voltage balancing method for series-connected power devices in an LLC resonant converter[J]. IEEE Transactions on Power Electronics, 2021, 36(4): 3628-3632. [21] Shao Shuai, Li Yucen, Sheng Jing, et al.A modular multilevel resonant DC-DC converter[J]. IEEE Transa- ctions on Power Electronics, 2020, 35(8): 7921-7932. [22] Lu Zhongzhiguang, Lin Lei, Wang Xuehua, et al.LLC-MMC resonant DC-DC converter: modulation method and capacitor voltage balance control strategy[C]//2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 2020: 2056-2061. [23] Yeon C, Kim J, Park M, et al.Improving the light- load regulation capability of LLC series resonant converter using impedance analysis[J]. IEEE Transa- ctions on Power Electronics, 2017, 32(9): 7056-7067. [24] 孙谦浩, 李亚楼, 孟经伟, 等. 基于移相控制的高频链模块化多电平直流变压器分布式控制管理策略及轮换电容电压平衡方法[J]. 中国电机工程学报, 2018, 38(5): 1310-1318. Sun Qianhao, Li Yalou, Meng Jingwei, et al.Dis- tributed control strategy and alternate modulation balance algorithm of high-frequency-link modular multilevel DC transformer based on phase-shifting principle[J]. Proceedings of the CSEE, 2018, 38(5): 1310-1318. [25] 管州, 梅军, 丁然, 等. 基于拓展移相控制的直流配电网模块化多电平直流变压器[J]. 电工技术学报, 2019, 34(13): 2770-2781. Guan Zhou, Mei Jun, Ding Ran, et al.Modular multilevel DC transformer for DC distribution appli- cation based on extended phase-shift control[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2770-2781. [26] 王暄, 王广柱, 孙晓伟, 等. 具有宽范围输出电压的三电平半桥LLC谐振变换器控制策略[J]. 电工技术学报, 2017, 32(21): 24-33. Wang Xuan, Wang Guangzhu, Sun Xiaowei, et al.Control strategy of three-level half-bridge LLC resonant converter with wide output voltage range[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 24-33. |
|
|
|