|
|
A Calculation Method of Magnetic Field of Wireless Charging Nanocrystalline Thin Layer Shielding Based on Transition Boundary Condition |
Zhu Zixu1, Zhang Xian2,3, Yang Qingxin2,3, Sha Lin1, Liu Lidong4 |
1. Tianjin Key Laboratory of Intelligent Control of Electrical Equipment Tiangong University Tianjin 300387 China; 2. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 3. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300130 China; 4. Hengdian Group DMEGC Magnetics Co. Ltd Dongyang 322118 China |
|
|
Abstract The nanocrystalline thin layer magnetic shielding structure in the wireless charging system of electric vehicle greatly reduces the volume and weight of the coupling mechanism, which increases the difficulty of the simulation calculation of the composite shielding. In order to reduce the calculation time of the magnetic field around the shield, combined with the TBC (Transition Boundary Condition) calculation method, the magnetic field distribution with high magnetic conductivity in the nanocrystalline thin layer is analyzed, and the wireless charging thin-layer TBC calculation model is designed for the nanocrystalline magnetic shielding composite system in wireless charging of electric vehicles. The general computing model and the TBC calculation model of the wireless charging system are constructed separately, and the calculation time of TBC model can be reduced to 41.7% of the general model, which speeds up the calculation speed of wireless charging composite shielding model.
|
Received: 30 July 2021
|
|
|
|
|
[1] 杨庆新, 章鹏程, 祝丽花, 等. 无线电能传输技术的关键基础与技术瓶颈问题[J]. 电工技术学报, 2015, 30(5): 1-8. Yang Qingxin, Zhang Pengcheng, Zhu Lihua, et al.Key fundamental problems and technical bottlenecks of the wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2015, 30(5): 1-8. [2] 张献, 章鹏程, 杨庆新, 等. 基于有限元方法的电动汽车无线充电耦合机构的磁屏蔽设计与分析[J]. 电工技术学报, 2016, 31(1): 71-79. Zhang Xian, Zhang Pengcheng, Yang Qingxin, et al.Magnetic shielding design and analysis for wireless charging coupler of electric vehicles based on finite element method[J]. Transactions of China Electrotechnical Society, 2016, 31(1): 71-79. [3] 薛明, 杨庆新, 章鹏程, 等. 无线电能传输技术应用研究现状与关键问题[J]. 电工技术学报, 2021, 36(8): 1547-1568. Xue Ming, Yang Qingxin, Zhang Pengcheng, et al.Application status and key issues of wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1547-1568. [4] 张献, 任年振, 杨庆新, 等. 电动汽车无线充电自整定控制[J]. 电工技术学报, 2020, 35(23): 4825-4834. Zhang Xian, Ren Nianzhen, Yang Qingxin, et al.Research on self-tuning control strategy of wireless charging for electric vehicles[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 4825-4834. [5] 苏玉刚, 阳剑, 戴欣, 等. 基于TensorFlow神经网络的MCR-WPT系统负载与互感识别方法[J]. 电力系统自动化, 2021, 45(18): 162-169. Su Yugang, Yang Jian, Dai Xin, et al.TensorFlow neural network based load and mutual inductance identification method for magnetic coupling resonant wireless power transfer system[J]. Automation of Electric Power Systems, 2021, 45(18): 162-169. [6] 薄强, 王丽芳, 张玉旺, 等. 应用于无线充电系统的SiC MOSFET关断特性分析[J]. 电力系统自动化, 2021, 45(15): 150-157. Bo Qiang, Wang Lifang, Zhang Yuwang, et al.Analysis of turn-off characteristics of SiC MOSFET applied to wireless charging system[J]. Automation of Electric Power Systems, 2021, 45(15): 150-157. [7] 张献, 王朝晖, 魏斌, 等. 电动汽车无线充电系统中电屏蔽对空间磁场的影响分析[J]. 电工技术学报, 2019, 34(8): 1580-1588. Zhang Xian, Wang Zhaohui, Wei Bin, et al.Analysis of the influence of electric shield on space magnetic field in electric vehicle wireless charging system[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1580-1588. [8] 张献, 苑朝阳, 杨庆新, 等. 自激推挽式磁耦合无线电能传输系统磁屏蔽特性分析[J]. 中国电机工程学报, 2018, 38(2): 555-561, 686. Zhang Xian, Yuan Zhaoyang, Yang Qingxin, et al.Analysis of the magnetic shielding characteristics of magnetic coupling resonant wireless power transmission system based on self-excited push-pull converter[J]. Proceedings of the CSEE, 2018, 38(2): 555-561, 686. [9] 靳志芳. 磁耦合谐振式无线电能传输系统线圈的电磁分析与优化设计[D]. 北京: 北京交通大学, 2017. [10] Cruciani S, Campi T, Maradei F, et al. Active shielding design and optimization of a wireless power transfer (WPT) system for automotive[J]. Energies, 2020, 13(21): 5575(1-12). [11] 沈栋, 杜贵平, 丘东元, 等. 无线电能传输系统电磁兼容研究现况及发展趋势[J]. 电工技术学报, 2020, 35(13): 2855-2869. Shen Dong, Du Guiping, Qiu Dongyuan, et al.Research status and development trend of electromagnetic compatibility of wireless power transmission system[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2855-2869. [12] 贾金亮, 闫晓强. 磁耦合谐振式无线电能传输特性研究动态[J]. 电工技术学报, 2020, 35(20): 4217-4231. Jia Jinliang, Yan Xiaoqiang.Research tends of magnetic coupling resonant wireless power transfer characteristics[J]. Transactions of China Electrotechnical Society, 2020, 35(20): 4217-4231. [13] 杨庆新, 李永建. 先进电工磁性材料特性与应用发展研究综述[J]. 电工技术学报, 2016, 31(20): 1-29. Yang Qingxin, Li Yongjian.Characteristics and developments of advanced magnetic materials in electrical engineering: a review[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 1-29. [14] 周丽波, 梁迪飞, 李维佳, 等. 无线充电用磁屏蔽材料[J]. 磁性材料及器件, 2019, 50(6): 57-63. Zhou Libo, Liang Difei, Li Weijia, et al.Magnetic shielding material for wireless charging[J]. Journal of Magnetic Materials and Devices, 2019, 50(6): 57-63. [15] 崔一帆, 杨庆新, 李永建. 复杂电流波形下软磁复合材料磁特性的测试[J]. 电工电能新技术, 2021, 40(7): 48-54. Cui Yifan, Yang Qingxin, Li Yongjian.Test of magnetic properties of soft magnetic composite materials under complex current waveforms[J]. Advanced Technology of Electrical Engineering and Energy, 2021, 40(7): 48-54. [16] 张长庚, 杨庆新, 李永建. 电工软磁材料旋转磁滞损耗测量及建模[J]. 电工技术学报, 2017, 32(11): 208-216. Zhang Changgeng, Yang Qingxin, Li Yongjian.Measurement and modeling of rotational hysteresis loss of electric soft magnetic material[J]. Transactions of China Electrotechnical Society, 2017, 32(11): 208-216. [17] Sun Wei, Li Qiang, Sun Le, et al.Study on magnetic shielding for performance improvement of axial-field dual-rotor segmented switched reluctance machine[J]. CES Transactions on Electrical Machines and Systems, 2021, 5(1): 50-61. [18] 姚可夫, 施凌翔, 陈双琴, 等. 铁基软磁非晶/纳米晶合金研究进展及应用前景[J]. 物理学报, 2018, 67(1): 8-15. Yao Kefu, Shi Lingxiang, Chen Shuangqin, et al.Research progress and application prospect of Fe-based soft magnetic amorphous/nanocrystalline alloys[J]. Acta Physica Sinica, 2018, 67(1): 8-15. [19] 季乐乐. 基于磁耦合谐振的电动汽车无线充电技术的研究[D]. 芜湖: 安徽工程大学, 2019. [20] Xiong Meng, Wei Xuezhe, Huang Yonghua, et al.Research on novel flexible high-saturation nanocrystalline cores for wireless charging systems of electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2021, 68(9): 8310-8320. [21] 迟青光, 张艳丽, 陈吉超, 等. 非晶合金铁心损耗与磁致伸缩特性测量与模拟[J]. 电工技术学报, 2021, 36(18): 3876-3883. Chi Qingguang, Zhang Yanli, Chen Jichao, et al.Measurement and modeling of lossand magnetostrictive properties for the amorphous alloy core[J]. Transactions of China Electrotechnical Society, 2021, 36(18): 3876-3883. [22] Sarto M S.A new model for the FDTD analysis of the shielding performances of thin composite structures[J]. IEEE Transactions on Electromagnetic Compatibility, 1999, 41(4): 298-306. [23] Sarto M S.Electromagnetic shielding of thermoformed lightweight plastic screens[J]. IEEE Transactions on Electromagnetic Compatibility, 2004, 46(4): 588-596. [24] Wang Yiren, Calderon-Lopez G, Forsyth A J.High-frequency gap losses in nanocrystalline cores[J]. IEEE Transactions on Power Electronics, 2017, 32(6): 4683-4690. [25] Halsáz Z, Csizmadia E, Palánki Z, et al. Homogeneity of magnetic properties within a single soft magnetic core, especially in huge cores[J]. IEEE Transactions on Magnetics, 2014, 50(4): 2004203(1-3). [26] Dular P, Gyselinck J, Geuzaine C, et al.A 3-D magnetic vector potential formulation taking eddy currents in lamination stacks into account[J]. IEEE Transactions on Magnetics, 2003, 39(3): 1424-1427. [27] Gaona D E, Jiang Chaoqiang, Long Teng.Highly efficient 11.1-kW wireless power transfer utilizing nanocrystalline ribbon cores[J]. IEEE Transactions on Power Electronics, 2021, 36(9): 9955-9969. [28] Gaona D E, Ghosh S, Long Teng.Feasibility study of nanocrystalline-ribbon cores for polarized inductive power transfer pads[J]. IEEE Transactions on Power Electronics, 2020, 35(7): 6799-6809. [29] Frljić S, Trkulja B. Two-step method for the calculation of eddy current losses in an open-core transformer[J]. IEEE Transactions on Magnetics, 2021, 57(3): 6300608(1-8). [30] Gao Yanhui, Muramatsu K, Hatim M J, et al.The effect of laminated structure on coupled magnetic field and mechanical analyses of iron core and its homogenization technique[J]. IEEE Transactions on Magnetics, 2011, 47(5): 1358-1361. |
|
|
|