|
|
A Soft Clustering Method for the Large-Scale Retired Lithium-Ion Batteries Based on Electrochemical Impedance Spectroscopy |
Lai Xin1, Chen Quanwei1, Deng Cong1, Han Xuebing2, Zheng Yuejiu1 |
1. School of mechanical engineering University of Shanghai for Science and Technology Shanghai 200093 China; 2. School of vehicle and transportation Tsinghua University Beijing 100084 China |
|
|
Abstract The sorting efficiency and accuracy of retired lithium-ion batteries (RLIBs) cannot be obtained at the same time, which seriously restricts the economy and safety of echelon utilization of large-scale RLIBs. To address these issues, a soft clustering method for the large-scale RLIBs based on Electrochemical Impedance Spectroscopy (EIS) is proposed in this study. First, the EIS test and distribution of relaxation times (DRT) analysis are conducted on RLIBs, and then a correlation model between battery capacity and DRT is established using the BP neural network, which is used for the rapid estimation of large-scale battery capacity. Second, six dimensional criteria such as battery capacity, ohmic internal resistance, and DRT characteristics are constructed. On this basis, a soft clustering method based on Gaussian mixture model is proposed. In this method, the important electrochemical characteristics in the battery is considered, and the soft clustering of RLIBs is implemented, which greatly improves the accuracy and flexibility of clustering results. Finally, the clustering results are verified by calculating the contour coefficients and performing HPPC experiments. Experimental results show that the time to obtain battery capacity is shortened from 3 hours in standard capacity test to 10 minutes, and the capacity prediction error is controlled within 4%. The proposed soft clustering method can improve the flexibility of battery regrouped and ensure the satisfactory consistency of regrouped batteries.
|
Received: 26 August 2021
|
|
|
|
|
[1] 宫明辉, 乌江, 焦朝勇. 基于模糊自适应扩展卡尔曼滤波器的锂电池SOC估算方法[J]. 电工技术学报, 2020, 35(18): 3972-3978. Gong Minghui, Wu Jiang, Jiao Chaoyong.SOC estimation method of lithium battery based on fuzzy adaptive extended Kalman filter[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3972-3978. [2] 张振宇, 汪光森, 聂世雄, 等. 脉冲大倍率放电条件下磷酸铁锂电池荷电状态估计[J]. 电工技术学报, 2019, 34(8): 1769-1779. Zhang Zhenyu, Wang Guangsen, Nie Shixiong, et al.State of charge estimation of LiFePO4 battery under the condition of high rate pulsed discharge[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1769-1779. [3] 石琼林, 郭东旭, 杨耕, 等. 具有磷酸铁锂电池负极特征的SOC区间的确定方法[J]. 电工技术学报, 2020, 35(19): 4097-4105. Shi Qionglin, Guo Dongxu, Yang Geng, et al.A method to determine characteristic region of negative electrode with state of charge for lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4097-4105. [4] Casals L C, García B A, Canal C.Second life batteries lifespan: rest of useful life and environmental analysis[J]. Journal of Environmental Management, 2019, 232: 354-363. [5] Xu Zhicheng, Wang Jun, Lund P D, et al.A novel clustering algorithm for grouping and cascade utilization of retired Li-ion batteries[J]. Journal of Energy Storage, 2020, 29: 101303. [6] Lai Xin, Huang Yunfeng, Gu Huanghui, et al.Turning waste into wealth: a systematic review on echelon utilization and material recycling of retired lithium-ion batteries[J]. Energy Storage Materials, 2021, 40: 96-123. [7] 孙冬, 许爽. 梯次利用锂电池健康状态预测[J]. 电工技术学报, 2018, 33(9): 2121-2129. Sun Dong, Xu Shuang.State of health prediction of second-use lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 2121-2129. [8] Lai Xin, Huang Yunfeng, Deng Cong, et al.Sorting, regrouping, and echelon utilization of the large-scale retired lithium batteries: a critical review[J]. Renewable and Sustainable Energy Reviews, 2021, 146: 111162. [9] 李晓宇, 徐佳宁, 胡泽徽, 等. 磷酸铁锂电池梯次利用健康特征参数提取方法[J]. 电工技术学报, 2018, 33(1): 9-16. Li Xiaoyu, Xu Jianing, Hu Zehui, et al.The health parameter estimation method for LiFePO4 battery echelon use[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 9-16. [10] 徐佳宁, 倪裕隆, 朱春波. 基于改进支持向量回归的锂电池剩余寿命预测[J]. 电工技术学报, 2021, 36(17): 3693-3704. Xu Jianing, Ni Yulong, Zhu Chunbo.Remaining useful life prediction for lithium-ion batteries based on improved support vector regression[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3693-3704. [11] 徐余丰, 严加斌, 何建明, 等. 退役动力锂电池在光储微电网的集成与应用[J]. 储能科学与技术, 2021, 10(1): 349-354. Xu Yufeng, Yan Jiabin, He Jianming, et al.Integration and application of retried LIBs in photovoltaic and energy storage micro grid[J]. Energy Storage Science and Technology, 2021, 10(1): 349-354. [12] 聂江霖, 杨江朋, 蔡春健, 等. 基于多端口变压器的串联锂电池均压电路[J]. 电工技术学报, 2021, 36(20): 4274-4284. Nie Jianglin, Yang Jiangpeng, Cai Chunjian, et al.Voltage equalizing circuit of series lithium battery based on multi-port transformer[J]. Transactions of China Electrotechnical Society, 2021, 36(20): 4274-4284. [13] Lai Xin, Qiao Dongdong, Zheng Yuejiu, et al.A rapid screening and regrouping approach based on neural networks for large-scale retired lithium-ion cells in second-use applications[J]. Journal of Cleaner Production, 2019, 213: 776-791. [14] Zhou Long, He Long, Zheng Yuejiu, et al.Massive battery pack data compression and reconstruction using a frequency division model in battery management systems[J]. Journal of Energy Storage, 2020, 28: 101252. [15] He Xiangming, Zhang Gan, Feng Xuning, et al.A facile consistency screening approach to select cells with better performance consistency for commercial 18650 lithium ion cells[J]. International Journal of Electrochemical Science, 2017,12(11): 10239-10258. [16] 郑岳久, 李家琦, 朱志伟, 等. 基于快速充电曲线的退役锂电池模块快速分选技术[J]. 电网技术, 2020, 44(5): 1664-1673. Zheng Yuejiu, Li Jiaqi, Zhu Zhiwei, et al.Rapid classification based on fast charging curves for reuse of retired lithium-ion battery modules[J]. Power System Technology, 2020, 44(5): 1664-1673. [17] Zhang Xiaohu, Zhang Xiong, Sun Xianzhong, et al.Electrochemical impedance spectroscopy study of lithium-ion capacitors: modeling and capacity fading mechanism[J]. Journal of Power Sources, 2021, 488: 229454. [18] 范文杰, 徐广昊, 于泊宁, 等. 基于电化学阻抗谱的锂离子电池内部温度在线估计方法研究[J]. 中国电机工程学报, 2021, 41(9): 3283-3293. Fan Wenjie, Xu Guanghao, Yu Boning, et al.On-line estimation method for internal temperature of lithium-ion battery based on electrochemical impedance spectroscopy[J]. Proceedings of the CSEE, 2021, 41(9): 3283-3293. [19] 任东生, 冯旭宁, 韩雪冰, 等. 锂离子电池全生命周期安全性演变研究进展[J]. 储能科学与技术, 2018, 7(6): 957-966. Ren Dongsheng, Feng Xuning, Han Xuebing, et al.Recent progress on evolution of safety performance of lithium-ion battery during aging process[J]. Energy Storage Science and Technology, 2018, 7(6): 957-966. [20] Zhou Xing, Huang Jun, Pan Zhengqiang, et al.Impedance characterization of lithium-ion batteries aging under high-temperature cycling: importance of electrolyte-phase diffusion[J]. Journal of Power Sources, 2019, 426: 216-222. [21] 王佳, 黄秋安, 李伟恒, 等. 电化学阻抗谱弛豫时间分布基础[J]. 电化学, 2020, 26(5): 607-627. Wang Jia, Huang Qiuan, Li Weiheng, et al.Fundamentals of distribution of relaxation times for electrochemical impedance spectroscopy[J]. Journal of Electrochemistry, 2020, 26(5): 607-627. [22] Zhang Li, Wang Fulin, Sun Ting, et al.A constrained optimization method based on BP neural network[J]. Neural Computing and Applications, 2018, 29: 413-421. [23] 魏孟, 李嘉波, 叶敏, 等. 基于高斯混合回归的锂离子电池SOC估计[J]. 储能科学与技术, 2020, 9(3): 958-963. Wei Meng, Li Jiabo, Ye Min, et al.SOC estimation of Li-ion battery based on gaussian mixture regression[J]. Energy Storage Science and Technology, 2020, 9(3): 958-963. [24] 张成, 白建波, 兰康, 等. 基于数据挖掘和遗传小波神经网络的光伏电站发电量预测[J]. 太阳能学报, 2021, 42(3): 375-382. Zhang Cheng, Bai Jianbo, Lan Kang, et al.Photovoltaic power generation prediction based on data mining and genetic wavelet neural network[J]. Acta Energiae Solaris Sinica, 2021, 42(3): 375-382. |
|
|
|