|
|
Quantitative Analysis of Wind Turbine Blade Icing and Its Application |
Hu Qin1, Wang Huan1, Qiu Gang2, Shu Lichun1, Jiang Xingliang1 |
1. Xuefeng Mountain Energy Equipment Safety National Observation and Research Station of Chongqing University Chongqing 400044 China; 2. Electric Power Research Institute of State Grid Jiangsu Electric Power Co. Ltd Nanjing 211103 China |
|
|
Abstract The quantitative analysis of wind turbine blade icing is the basis of understanding and solving the icing problem. Considering that there is little research on this at home and abroad, in this paper, the artificial icing test of small wind turbine is carried out in the multi-functional artificial climate laboratory, the blade icing types under three icing conditions such as rime, hard rime and soft rime are obtained, and the icing results are deeply analyzed; At the same time, a relatively perfect blade icing calibration method is given to realize the quantitative analysis of blade icing, and then its practical application is analyzed. The results show that the icing is concentrated in the leading edge of the blade, and the icing range near the stagnation point of the airfoil surface is about 11% of the chord length of the blade; The icing showed a linear growth trend in the blade span-wise direction, accounting for about 70% of the blade length, and the icing was more obvious in the area of about 30%~40% of the blade length near the blade tip. Therefore, the leading edge area formed by the section airfoil surface near the blade tip with about 30%~40% of the blade length and occupying 11% of the blade chord length can be taken as the key research area, that is, in practical application, it can be designed as the best icing protection area and the setting area of blade icing thickness monitoring points. The research results of this paper can provide data reference for solving the problem of fan icing.
|
Received: 11 August 2021
|
|
|
|
|
[1] 胡帅, 向月, 沈晓东, 等. 计及气象因素和风速空间相关性的风电功率预测模型[J]. 电力系统自动化, 2021, 45(7): 28-36. Hu Shuai, Xiang Yue, Shen Xiaodong, et al.Wind power prediction model considering meteorological factor and spatial correlation of wind speed[J]. Automation of Electric Power Systems, 2021, 45(7): 28-36. [2] 邱刚, 舒立春, 胡琴, 等. 风力发电机叶片防冰的数值计算模型及现场试验研究[J]. 中国电机工程学报, 2018, 38(7): 2198-2204, 2235. Qiu Gang, Shu Lichun, Hu Qin, et al.Numerical anti-icing model and field experimental investigation of wind turbine blade[J]. Proceedings of the CSEE, 2018, 38(7): 2198-2204, 2235. [3] 李瀚涛, 舒立春, 胡琴, 等. 考虑覆冰粗糙度影响的风力发电机叶片气动性能数值仿真[J]. 电工技术学报, 2018, 33(10): 2253-2260. Li Hantao, Shu Lichun, Hu Qin, et al.Numerical simulation of wind turbine blades aerodynamic performance based on ice roughness effect[J]. Transactions of China Electrotechnical Society, 2018, 33(10): 2253-2260. [4] 舒立春, 梁健, 胡琴, 等. 旋转风力机的水滴撞击特性与雾凇模拟[J]. 电工技术学报, 2018, 33(4): 800-807. Shu Lichun, Liang Jian, Hu Qin, et al.Droplet impingement characteristics and rime ice accretion of rotating wind turbine[J]. Transactions of China Electrotechnical Society, 2018, 33(4): 800-807. [5] 舒立春, 任晓凯, 胡琴, 等. 环境参数对小型风力发电机叶片覆冰特性及输出功率的影响[J]. 中国电机工程学报, 2016, 36(21): 5873-5878, 6031. Shu Lichun, Ren Xiaokai, Hu Qin, et al.Influences of environmental parameters on icing characteristics and output power of small wind turbine[J]. Proceedings of the CSEE, 2016, 36(21): 5873-5878, 6031. [6] 胡琴, 杨大川, 蒋兴良, 等. 叶片模拟冰对风力发电机功率特性影响的试验研究[J]. 电工技术学报, 2020, 35(22): 4807-4815. Hu Qin, Yang Dachuan, Jiang Xingliang, et al.Experimental study on the effect of blade simulated icing on power characteristics of wind turbine[J]. Transactions of China Electrotechnical Society, 2020, 35(22): 4807-4815. [7] Fu Ping, Farzaneh M.A CFD approach for modeling the rime-ice accretion process on a horizontal-axis wind turbine[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(4/5): 181-188. [8] Shu Lichun, Liang Jian, Hu Qin, et al.Study on small wind turbine icing and its performance[J]. Cold Regions Science and Technology, 2017, 134: 11-19. [9] Fakorede O, Feger Z, Ibrahim H, et al.Ice protection systems for wind turbines in cold climate: characteristics, comparisons and analysis[J]. Renewable and Sustainable Energy Reviews, 2016, 65: 662-675. [10] Suke P.Analysis of heating systems to mitigate ice accretion on wind turbine blades[D]. Hamilton: McMaster University, 2014. [11] Etemaddar M, Hansen M O L, Moan T. Wind turbine aerodynamic response under atmospheric icing conditions[J]. Wind Energy, 2014, 17(2): 241-265. [12] Han Yiqiang, Palacios J, Schmitz S.Scaled ice accretion experiments on a rotating wind turbine blade[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 109: 55-67. [13] Kraj A G, Bibeau E L.Phases of icing on wind turbine blades characterized by ice accumulation[J]. Renewable Energy, 2010, 35(5): 966-972. [14] Mayer C, Ilinca A, Fortin G, et al.Wind tunnel study of electro-thermal de-icing of wind turbine blades[J]. International Journal of Offshore & Polar Engineering, 2007, 17(3): 182-188. [15] Virk M S, Homola M C, Nicklasson P J.Atmospheric icing on large wind turbine blades[J]. International Journal of Energy and Environment, 2012, 3(1): 1-8. [16] 韩兴波, 蒋兴良, 黄亚飞, 等. 复合绝缘子直流电场下的水滴运动及覆冰特性[J]. 电工技术学报, 2020, 35(9): 2042-2050. Han Xingbo, Jiang Xingliang, Huang Yafei, et al.Icing properties of composite insulator and droplet movement under DC electric field[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 2042-2050. [17] Hu Qin, Wang Shijing, Yang Hongjun, et al.Effects of icing degree on ice growth characteristics and flashover performance of 220kV composite insulators[J]. Cold Regions Science and Technology, 2016, 128: 47-56. [18] 王绍龙, 李岩, 田川公太朗, 等. 旋转叶片结冰风洞试验研究[J]. 工程热物理学报, 2017, 38(6): 1229-1236. Wang Shaolong, Li Yan, Tagawa K, et al.A wind tunnel experimental study on icing distribution of rotating blade[J]. Journal of Engineering Thermophysics, 2017, 38(6): 1229-1236. [19] 舒立春, 邱刚, 胡琴, 等. 风力发电机叶片临界除冰功率的数值计算模型及自然环境实验研究[J]. 中国电机工程学报, 2018, 38(13): 3997-4003, 4041. Shu Lichun, Qiu Gang, Hu Qin, et al.Numerical model and field experimental investigation of threshold heat flux of wind turbine de-icing[J]. Proceedings of the CSEE, 2018, 38(13): 3997-4003, 4041. [20] Hochart C, Fortin G, Perron J, et al.Wind turbine performance under icing conditions[J]. Wind Energy, 2008, 11(4): 319-333. [21] Shu Lichun, Li Hantao, Hu Qin, et al.Study of ice accretion feature and power characteristics of wind turbines at natural icing environment[J]. Cold Regions Science and Technology, 2018, 147: 45-54. |
|
|
|