|
|
NF+QPR+LPF Dual-Loop Secondary Harmonic Current Suppression Method for Energy Storage System in DC Microgrid |
Xu Qinghan, Meng Xianhui, Yang Ling, Ye Meiting, He Jianglun |
School of Automation Guangdong University of Technology Guangzhou 510006 China |
|
|
Abstract The current on inductive branch on the DC side of the energy storage system in the DC microgrid contains a secondary harmonic component, which will increase the current stress and through-state loss of the switching tube in the converter. The traditional dual-loop control method shows that the secondary harmonic current is not suppressed obviously and the dynamic characteristics of the system is inferior during load hopping. Aiming at these two problems, a control method of introducing notch filter (NF), quasi-proportional resonator (QPR) and load power feedforward (LPF) based on dual-loop control is proposed. The method increases the amplitude of the equivalent impedance of the DC-side inductance branch at twice the output frequency without reducing the amplitude-frequency gain of the voltage regulator or changing the frequency adaptability of the equivalent impedance, and has a excellent suppression effect of the second harmonic current. Meanwhile, the equivalent impedance of the DC side inductance branch outside the double output frequency amplitude is reduced under this control method, which improves the system's ability to resist sudden changes in load. Finally, the experimental results demonstrate the effectiveness of the proposed control method.
|
Received: 21 December 2021
|
|
|
|
|
[1] Alshareef M, Lin Zhengyu, Li Fulong, et al.A grid interface current control strategy for DC micro-grids[J]. CES Transactions on Electrical Machines and Systems, 2021, 5(3): 249-256. [2] 孙孝峰, 张绘欣, 张涵, 等. 一种用于电-氢多能互补型微电网的双有源桥集成Boost拓扑及其控制[J]. 电工技术学报, 2021, 36(10): 2092-2104. Sun Xiaofeng, Zhang Huixin, Zhang Han, et al.Topology and control strategy of dual active bridge integrated Boost circuit for electro-hydrogen multi-energy complementary microgrid[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2092-2104. [3] 刘彦呈, 庄绪州, 张勤进, 等. 基于虚拟频率的直流微电网下垂控制策略[J]. 电工技术学报, 2021, 36(8): 1693-1702. Liu Yancheng, Zhuang Xuzhou, Zhang Qinjin, et al.A virtual current-frequency droop control in DC microgrid[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1693-1702. [4] 刘津铭, 陈燕东, 伍文华, 等. 孤岛微电网序阻抗建模与高频振荡抑制[J]. 电工技术学报, 2020, 35(7): 1538-1552. Liu Jinming, Chen Yandong, Wu Wenhua, et al.Sequence impedance modeling and high-frequency oscillation suppression method for island microgrid[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1538-1552. [5] 年珩, 叶余桦. 三端口隔离双向DC-DC变换器模型预测控制技术[J]. 电工技术学报, 2020, 35(16): 3478-3488. Nian Heng, Ye Yuhua.Model predictive control of three-port isolated bidirectional DC-DC converter[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3478-3488. [6] 周京华, 翁志鹏, 宋晓通. 兼顾可靠性与经济性的孤岛型光储微电网容量配置方法[J]. 电力系统自动化, 2021, 45(8): 166-174. Zhou Jinghua, Weng Zhipeng, Song Xiaotong.Capacity configuration method of islanded microgrid with photovoltaic and energy storage system con-sidering reliability and economy[J]. Automation of Electric Power Systems, 2021, 45(8): 166-174. [7] Iovine A, Carrizosa M J, Damm G, et al.Nonlinear control for DC microgrids enabling efficient rene-wable power integration and ancillary services for AC grids[J]. IEEE Transactions on Power Systems, 2019, 34(6): 5136-5146. [8] 余雪萍, 涂春鸣, 肖凡, 等. 三端口隔离DC-DC变换器软开关特性[J]. 电工技术学报, 2021, 36(23): 5014-5026. Yu Xueping, Tu Chunming, Xiao Fan, et al.Soft switching characteristics of the three-port isolated DC-DC converter[J]. Transactions of China Electro-technical Society, 2021, 36(23): 5014-5026. [9] 邓翔, 韦徵, 龚春英, 等. 一种新颖的抑制两级式直交逆变器输入电流低频脉动的方法[J]. 中国电机工程学报, 2011, 31(30): 24-29. Deng Xiang, Wei Zheng, Gong Chunying, et al.A novel technique for low frequency input current ripple reduction in two-stage DC-AC inverter[J]. Pro-ceedings of the CSEE, 2011, 31(30): 24-29. [10] 王旭东, 张方华, 肖旭, 等. 带双Buck逆变器的DC/DC变换器低频电流纹波抑制[J]. 电力电子技术, 2013, 47(5): 35-37, 58. Wang Xudong, Zhang Fanghua, Xiao Xu, et al.Low frequency current ripple rejection of a DC/DC converter with dual-Buck inverter load[J]. Power Electronics, 2013, 47(5): 35-37, 58. [11] 徐辰华, 伍建松, 刘斌, 等. 直流侧电压高二次纹波率条件下的单相逆变器谐波削弱调制[J]. 电力系统自动化, 2020, 44(3): 176-184. Xu Chenhua, Wu Jiansong, Liu Bin, et al.Harmonic reduction modulation strategy of single-phase inverter with high second-order ripple rate of voltage on DC side[J]. Automation of Electric Power Systems, 2020, 44(3): 176-184. [12] 姚陶, 马超, 孙辰军, 等. 两级式单相逆变器输入谐波特性分析及抑制[J]. 电力电子技术, 2021, 55(7): 68-71. Yao Tao, Ma Chao, Sun Chenjun, et al.Analysis and suppression of input harmonic current in the two-stage single-phase inverter[J]. Power Electronics, 2021, 55(7): 68-71. [13] 祝国平, 阮新波, 王学华, 等. 两级式单相逆变器二次纹波电流的抑制与动态特性的改善[J]. 中国电机工程学报, 2013, 33(12): 72-80, 188. Zhu Guoping, Ruan Xinbo, Wang Xuehua, et al.Suppression of the second harmonic current and improvement of the dynamic performance for two-stage single-phase inverters[J]. Proceedings of the CSEE, 2013, 33(12): 72-80, 188. [14] 张力, 阮新波, 任小永. 两级式逆变器中前级直流变换器的控制方法[J]. 中国电机工程学报, 2015, 35(3): 660-670. Zhang Li, Ruan Xinbo, Ren Xiaoyong.Control schemes for the front-end DC-DC converter in the two-stage inverter[J]. Proceedings of the CSEE, 2015, 35(3): 660-670. [15] 章勇高, 付伟东, 刘鹏, 等. 一种新型逆变器交流侧功率解耦电路及其控制策略[J]. 中国电机工程学报, 2020, 40(22): 7440-7451. Zhang Yonggao, Fu Weidong, Liu Peng, et al.Study on a novel AC-side power decoupling circuit of inverter and its control strategy[J]. Proceedings of the CSEE, 2020, 40(22): 7440-7451. [16] Guo Xiaoqiang, Yang Yong, Wang Xuehui.Optimal space vector modulation of current-source converter for DC-link current ripple reduction[J]. IEEE Transa-ctions on Industrial Electronics, 2019, 66(3): 1671-1680. [17] Fukushima K, Norigoe I, Shoyama M, et al.Input current-ripple consideration for the pulse-link DC-AC converter for fuel cells by small series LC circuit[C]//IEEE Applied Power Electronics Conference and Exposition (APEC), Washington, DC, 2009: 447-451. [18] Wang Haoran, Liu Yang, Wang Huai.On the practical design of a two-terminal active capacitor[J]. IEEE Transactions on Power Electronics, 2019, 34(10): 10006-10020. [19] 林智乐, 何良宗, 周鸿彦. 基于有源负电容的电压源型逆变器直流母线二次功率脉动的抑制方法[J]. 中国电机工程学报, 2021, 41(22): 7772-7781. Lin Zhile, He Liangzong, Zhou Hongyan.Suppressing secondary power pulsation method for DC bus of voltage source inverter based on active negative capacitor[J]. Proceedings of the CSEE, 2021, 41(22): 7772-7781. [20] Kyritsis A C, Papanikolaou N P, Tatakis E C.A novel parallel active filter for current pulsation smoothing on single stage grid-connected AC-PV modules[C]//2007 European Conference on Power Electronics and Applications, Aalborg, 2007: 1-10. [21] Wai R J, Lin Chunyu.Dual active low-frequency ripple control for clean-energy power-conditioning mechanism[J]. IEEE Transactions on Industrial Elec-tronics, 2011, 58(11): 5172-5185. [22] Itoh J I, Hayashi F.Ripple current reduction of a fuel cell for a single-phase isolated converter using a DC active filter with a center tap[J]. IEEE Transactions on Power Electronics, 2010, 25(3): 550-556. [23] Liu Changrong, Lai J S.Low frequency current ripple reduction technique with active control in a fuel cell power system with inverter load[J]. IEEE Transa-ctions on Power Electronics, 2007, 22(4): 1429-1436. [24] Li Zhongxi, Lizana R, Lukic S M, et al.Current injection methods for ripple-current suppression in delta-configured split-battery energy storage[J]. IEEE Transactions on Power Electronics, 2019, 34(8): 7411-7421. [25] 史尤杰, 刘邦银, 段善旭. 单级式单相逆变器及其低频输入电流纹波抑制[J]. 高电压技术, 2019, 45(1): 259-268. Shi Youjie, Liu Bangyin, Duan Shanxu.Single-stage single-phase inverter and its low-frequency input current ripple reduction[J]. High Voltage Engineering, 2019, 45(1): 259-268. [26] Kan Jiarong, Xie Shaojun, Wu Yunya, et al.Single-stage and Boost-voltage grid-connected inverter for fuel-cell generation system[J]. IEEE Transactions on Industrial Electronics, 2015, 62(9): 5480-5490. |
|
|
|