|
|
Distributed Integrated Demand Response of Industrial Park Based on Improved Consensus Algorithm |
Xu Chengsi1,2, Dong Shufeng1, Hua Yibo1, Xu Hang2, Zhu Mengting1 |
1. College of Electrical Engineering Zhejiang University Hangzhou 310027 China; 2. Hangzhou Power Supply Company of State Grid Zhejiang Electricity Power Co. Ltd Hangzhou 310009 China |
|
|
Abstract In view of the problem that the implementation of centralized and centralized- distributed integrated demand response (IDR) methods depends on the park level energy management system, this paper proposes a distributed IDR method for the industrial park based on the improved consensus algorithm. Firstly, a distributed information interaction mechanism of industrial park is designed. Then, an IDR market mechanism within the park is proposed, which can make the optimal IDR scheme of individual users consistent with that of the whole park. Furthermore, based on the consensus algorithm and the centralized IDR model of industrial park, a distributed IDR model is proposed. Finally, in order to improve the practical applicability of the model, the consensus algorithm is improved by making the global deviation consistent and using the distributed merit-order method to improve the convergence. The final distributed IDR model of industrial park is established. Simulation results show that the proposed distributed IDR method can get an IDR scheme consistent with the centralized IDR without relying on the park level energy management system and reducing the information provided by users, and users can get higher benefits than participating in IDR independently.
|
Received: 19 November 2021
|
|
|
|
|
[1] 崔全胜, 白晓民, 董伟杰, 等. 用户侧综合能源系统规划运行联合优化[J]. 中国电机工程学报, 2019, 39(17): 4967-4981, 5279. Cui Quansheng, Bai Xiaomin, Dong Weijie, et al.Joint optimization of planning and operation in user-side multi-energy systems[J]. Proceedings of the CSEE, 2019, 39(17): 4967-4981, 5279. [2] Chen Zhengqi, Sun Yingyun, Ai Xin, et al.Integrated demand response characteristics of industrial park: a review[J]. Journal of Modern Power Systems and Clean Energy, 2020, 8(1): 15-26. [3] 何仲潇, 徐成司, 刘育权, 等. 考虑多能协同的工厂综合需求侧响应模型[J]. 电力自动化设备, 2017, 37(6): 69-74. He Zhongxiao, Xu Chengsi, Liu Yuquan, et al.Industrial park IDR model considering multi-energy cooperation[J]. Electric Power Automation Equipment, 2017, 37(6): 69-74. [4] 徐航, 董树锋, 何仲潇, 等. 基于多能互补的电/热综合需求响应[J]. 电网技术, 2019, 43(2): 480-487. Xu Hang, Dong Shufeng, He Zhongxiao, et al.Electro-thermal comprehensive demand response based on multi-energy complementarity[J]. Power System Tech-nology, 2019, 43(2): 480-487. [5] Zhang Xiaping, Shahidehpour M, Alabdulwahab A, et al.Hourly electricity demand response in the stochastic day-ahead scheduling of coordinated electricity and natural gas networks[J]. IEEE Transactions on Power Systems, 2016, 31(1): 592-601. [6] 彭春华, 张金克, 陈露, 等. 计及差异化需求响应的微电网源荷储协调优化调度[J]. 电力自动化设备, 2020, 40(3): 1-7. Peng Chunhua, Zhang Jinke, Chen Lu, et al.Source-load-storage coordinated optimal scheduling of micro-grid considering differential demand response[J]. Electric Power Automation Equipment, 2020, 40(3): 1-7. [7] 徐成司, 董树锋, 张舒鹏, 等. 面向工业园区的集中-分布式综合需求响应方法[J]. 电网技术, 2021, 45(2): 489-497. Xu Chengsi, Dong Shufeng, Zhang Shupeng, et al.Centralized-distributed integrated demand response method for industrial park[J]. Power System Tech-nology, 2021, 45(2): 489-497. [8] 边晓燕, 孙明琦, 赵健, 等. 基于一致性算法的源-荷协同分布式优化调控策略[J]. 中国电机工程学报, 2021, 41(4): 1334-1347, 1540. Bian Xiaoyan, Sun Mingqi, Zhao Jian, et al.Dis-tributed coordinative optimal dispatch and control of source and load based on consensus algorithm[J]. Proceedings of the CSEE, 2021, 41(4): 1334-1347, 1540. [9] 蒲天骄, 刘威, 陈乃仕, 等. 基于一致性算法的主动配电网分布式优化调度[J]. 中国电机工程学报, 2017, 37(6): 1579-1589. Pu Tianjiao, Liu Wei, Chen Naishi, et al.Distributed optimal dispatching of active distribution network based on consensus algorithm[J]. Proceedings of the CSEE, 2017, 37(6): 1579-1589. [10] 李翔宇, 赵冬梅. 基于模糊-概率策略实时反馈的虚拟电厂多时间尺度优化调度[J]. 电工技术学报, 2021, 36(7): 1446-1455. Li Xiangyu, Zhao Dongmei.Research on multi-time scale optimal scheduling of virtual power plant based on real-time feedback of fuzzy-probability strategy[J]. Transactions of China Electrotechnical Society, 2021, 36(7): 1446-1455. [11] 王昀, 谢海鹏, 孙啸天, 等. 计及激励型综合需求响应的电-热综合能源系统日前经济调度[J]. 电工技术学报, 2021, 36(9): 1926-1934. Wang Yun, Xie Haipeng, Sun Xiaotian, et al.Day-ahead economic dispatch for electricity-heating integrated energy system considering incentive inte-grated demand response[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1926-1934. [12] 甘德强, 杨莉, 冯冬涵. 电力经济与电力市场[M]. 北京: 机械工业出版社, 2010. [13] 张兰, 张经纬, 肖云鹏, 等. 新加坡电力市场需求响应机制及对中国电力市场建设的启示[J]. 中国电力, 2020, 53(9): 98-106. Zhang Lan, Zhang Jingwei, Xiao Yunpeng, et al.Demand response mechanism in singapore electricity market and its enlightenment to China's power market construction[J]. Electric Power, 2020, 53(9): 98-106. [14] Olfati-Saber R, Fax J A, Murray R M.Consensus and cooperation in networked multi-agent systems[J]. Proceedings of the IEEE, 2007, 95(1): 215-233. [15] 吕振宇, 吴在军, 窦晓波, 等. 基于离散一致性的孤立直流微网自适应下垂控制[J]. 中国电机工程学报, 2015, 35(17): 4397-4407. Lü Zhenyu, Wu Zaijun, Dou Xiaobo, et al.An adaptive droop control for the islanded DC microgrid based on discrete consensus algorithm[J]. Pro-ceedings of the CSEE, 2015, 35(17): 4397-4407. [16] 张孝顺, 余涛. 互联电网AGC功率动态分配的虚拟发电部落协同一致性算法[J]. 中国电机工程学报, 2015, 35(15): 3750-3759. Zhang Xiaoshun, Yu Tao.Virtual generation tribe based collaborative consensus algorithm for dynamic generation dispatch of AGC in interconnected power grids[J]. Proceedings of the CSEE, 2015, 35(15): 3750-3759. [17] Ren Wei, Beard R W.Consensus seeking in multiagent systems under dynamically changing interaction topo-logies[J]. IEEE Transactions on Automatic Control, 2005, 50(5): 655-661. [18] Zhang Ziang, Chow M Y.Convergence analysis of the incremental cost consensus algorithm under different communication network topologies in a smart grid[J]. IEEE Transactions on Power Systems, 2012, 27(4): 1761-1768. [19] 杨珺, 侯俊浩, 刘亚威, 等. 分布式协同控制方法及在电力系统中的应用综述[J]. 电工技术学报, 2021, 36(19): 4035-4049. Yang Jun, Hou Junhao, Liu Yawei, et al.Distributed cooperative control method and application in power system[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4035-4049. [20] 刘忠, 杨陈, 蒋玮, 等. 基于一致性算法的直流微电网储能系统功率分配技术[J]. 电力系统自动化, 2020, 44(7): 61-69. Liu Zhong, Yang Chen, Jiang Wei, et al.Consensus algorithm based power distribution technology for energy storage system in DC microgrid[J]. Auto-mation of Electric Power Systems, 2020, 44(7): 61-69. [21] Kar S, Hug G.Distributed robust economic dispatch in power systems: a consensus+innovations approach[C]//2012 IEEE Power and Energy Society General Meeting, San Diego, USA, 2012: 1-8. [22] Hug G, Kar S, Wu Chenye.Consensus+innovations approach for distributed multiagent coordination in a microgrid[J]. IEEE Transactions on Smart Grid, 2015, 6(4): 1893-1903. [23] Xin Huanhai, Liu Yun, Qu Zhihua, et al.Distributed control and generation estimation method for inte-grating high-density photovoltaic systems[J]. IEEE Transactions on Energy Conversion, 2014, 29(4): 988-996. [24] 吕朋蓬, 赵晋泉, 苏大威, 等. 基于一致性理论的独立微电网分布式动态经济调度[J]. 电力系统自动化, 2019, 43(5): 22-44. Lü Pengpeng, Zhao Jinquan, Su Dawei, et al.Consensus-based distributed dynamic economic dispatching for islanded microgrids[J]. Automation of Electric Power Systems, 2019, 43(5): 22-44. [25] 熊宇峰, 司杨, 郑天文, 等. 基于主从博弈的工业园区综合能源系统氢储能优化配置[J]. 电工技术学报, 2021, 36(3): 507-516. Xiong Yufeng, Si Yang, Zheng Tianwen, et al.Optimal configuration of hydrogen storage in indu-strial park integrated energy system based on stackelberg game[J]. Transactions of China Electro-technical Society, 2021, 36(3): 507-516. [26] 肖静, 吴宁, 冯玉斌, 等. 计及需求侧响应的用户侧储能最优运行决策分析[J]. 电气技术, 2021, 22(3): 20-25. Xiao Jing, Wu Ning, Feng Yubin, et al.Decision analysis for optimal operation of user-side energy storage considering demand-side response[J]. Elec-trical Engineering, 2021, 22(3): 20-25. [27] 吴界辰, 艾欣, 胡俊杰, 等. 面向智能园区多产消者能量管理的对等模型(P2P)建模与优化运行[J]. 电网技术, 2020, 44(1): 52-60. Wu Jiechen, Ai Xin, Hu Junjie, et al.Peer-to-peer modeling and optimal operation for prosumer energy management in intelligent community[J]. Power System Technology, 2020, 44(1): 52-60. [28] 苏德矿. 微积分(下)[M]. 北京: 高等教育出版社, 2001. |
|
|
|