|
|
A Review of the Research on Shape Memory Alloy Actuators |
Xu Dianguo1, Bai Fengqiang1, Zhang Xiangjun1, Yang Shihua2, Gu Jixiang1 |
1. Ministry of Education Key Laboratory of Electric Drive and Electric Propulsion Technology Harbin Institute of Technology Harbin 150001 China; 2. Shanghai Aerospace Intelligent Equipment Co. Ltd Shanghai 201100 China |
|
|
Abstract Shape memory alloys (SMAs) belong to the family of smart materials, which have the characteristics of shape memory effect (SME), superelasticity (SE), high damping, self-sensing, and biocompatibility. Shape memory alloy actuators (SMAAs) have the characteristics of high power- to-weight ratio, high strain stress, high driving frequency, and high design freedom, which are used in aerospace, robotics, biomedical, automotive automation, and information electronics. Actuators based on shape memory alloy are currently one of the most interesting research topics. Compared with traditional technologies based on electromagnetic, pneumatic, and hydraulic principles, SMAAs have the advantages of high power density, high precision, and low cost in some fields and application scenarios. However, multidisciplinary theoretical analysis and design ideas involve SMAA ontology design, system modeling, and control strategy, which makes it difficult to develop SMAA comprehensive design theory. This paper not only provides a review of recent SMAA research and commercial applications, but also explores SMAA comprehensive design theory. Key issues and future developments of SMAA research are discussed, which provides detailed references for researchers in SMAA-related fields.
|
Received: 12 July 2021
|
|
|
|
|
[1] Willaim S, Javed H.Foundations of materials science and engineering[M]. New York: McGraw-Hill Education, 2019. [2] Thompson B S, Gandhi M V, Kasiviswanathan S.An introduction to smart materials and structures[J]. Materials & Design, 1992, 13(1): 3-9. [3] Joselle M M, Brian R D, Timothy J W.Materials as machines[J]. Advanced Materals, 2020, 32(20): 1-48. [4] Sinapius J M.Adaptronics-smart structures and materials[M]. Berlin: Springer, 2021. [5] Yang Xiufeng, Chang Longlong, Pérez-Arancibia N O. An 88-milligram insect-scale autonomous crawling robot driven by a catalytic artificial muscle[J]. Science Robotics, 2020, 5(45): eaba0015. [6] 杨凯, 辜承林. 基于SMA弹簧紧凑型柔性电机的设计与研制[J]. 电工技术学报, 2010, 25(4): 59-64. Yang Kai, Gu Chenglin.Research on a compact and flexible actuator consisting of SMA springs[J]. Transactions of China Electrotechnical Society, 2010, 25(4): 59-64. [7] Zhang Jun, Sheng Jun, O’Neill C T, et al. Robotic artificial muscles: current progress and future perspectives[J]. IEEE Transactions on Robotics, 2019, 35(3): 761-781. [8] 杨凯, 辜承林, 严新荣. 基于内嵌式SMA电机的柔性机械手研制[J]. 中国电机工程学报, 2002, 22(12): 74-79. Yang Kai, Gu Chenglin, Yan Xinrong.A flexible robot hand with embedded SMA actuators[J]. Pro-ceedings of the CSEE, 2002, 22(12): 74-79. [9] Hwang D, Higuchi T.A planar wobble motor with a XY compliant mechanism driven by shape memory alloy[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(1): 302-315. [10] Elahinia M H.Shape memory alloy actuators: design, fabrication, and experimental evaluation[M]. https://searchworks.stanford.edu/view/11959186. [11] Olander A.An electrochemical investigation of solid cadmium-gold alloys[J]. Journal of the American Chemical Society, 1932, 54(10): 3819-3833. [12] Chang L C, Read T A.Plastic deformation and diffusionless phase changes in metals-the gold-cadmium beta phase[J]. JOM, 1951, 3(1): 47-52. [13] Buehler W J, Gilfrich J V, Wiley R C.Effect of low-temperature phase changes on the mechanical pro-perties of alloys near composition TiNi[J]. Journal of Applied Physics, 1963, 34(5): 1475-1477. [14] Wang F E, Buehler W J, Pickart S J.Crystal structure and a unique “Martensitic” transition of TiNi[J]. Journal of Applied Physics, 1965, 36(10): 3232-3239. [15] Kauffman G B, Mayo I.The story of nitinol: the serendipitous discovery of the memory metal and its applications[J]. The Chemical Educator, 1997, 2(2): 1-21. [16] Andreasen G F, Hilleman T B.An evaluation of 55 cobalt substituted nitinol wire for use in ortho-dontics[J]. The Journal of the American Dental Association, 1971, 82(6): 1373-1375. [17] 吴佳俊. 形状记忆合金平面涡卷式回转驱动器的研究[D]. 南京: 南京航空航天大学, 2014. [18] Hartl D J, Lagoudas D C.Aerospace applications of shape memory alloys[J]. Proceedings of the Institu-tion of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2007, 221(4): 535-552. [19] Mohd Jani J, Leary M, Subic A, et al.A review of shape memory alloy research, applications and opportunities[J]. Materials & Design, 2014, 56: 1078-1113. [20] Rodrigue H, Wang Wei, Han M W, et al.An overview of shape memory alloy-coupled actuators and robots[J]. Soft Robotics, 2017, 4(1): 3-15. [21] Ma J, Karaman I, Noebe R D.High temperature shape memory alloys[J]. International Materials Reviews, 2010, 55(5): 257-315. [22] 鲁军, 王凤翔. 磁控形状记忆合金旋转执行器研究[J]. 中国电机工程学报, 2008, 28(33): 115-120. Lu Jun, Wang Fengxiang.Study on rotating actuator of magnetically controlled shape memory alloy[J]. Proceedings of the CSEE, 2008, 28(33): 115-120. [23] Lu Yifan, Zhang Rongru, Xu Ye, et al.Resistance characteristics of SMA actuator based on the variable speed phase transformation constitutive model[J]. Materials (Basel, Switzerland), 2020, 13(6): 1479. [24] Tzou H S, Anderson G L, Natori M C.Active structure, devices, and systems[M]. Singapore: World Science Publishing Company, 1997. [25] Sreekanth M, Mathew A T, Vijayakumar R.A novel model-based approach for resistance estimation using rise time and sensorless position control of sub-millimetre shape memory alloy helical spring actuator[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(6): 1050-1064. [26] Lexcellent C.Shape-memory alloys handbook[M]. London: Iste, 2013. [27] 汪菲菲. 基于形状记忆合金驱动的热电转换装置的结构设计与试验研究[D]. 长春: 吉林大学, 2020. [28] Lagoudas D C.Shape memory alloys: modeling and engineering applications[M]. New York: Springer, 2008. [29] Kode V R C, Cavusoglu M C. Design and chara-cterization of a novel hybrid actuator using shape memory alloy and dc micromotor for minimally invasive surgery applications[J]. IEEE/ASME Transa-ctions on Mechatronics, 2007, 12(4): 455-464. [30] 王剑, 白洋, 郭吉丰. 旋转-直线型两自由度超声波电机建模与设计[J]. 电工技术学报, 2013, 28(11): 48-53. Wang Jian, Bai Yang, Guo Jifeng.Modeling and optimal design of the rotary-linear type two-degree-of-freedom ultrasonic motors[J]. Transactions of China Electrotechnical Society, 2013, 28(11): 48-53. [31] 程明,林明耀,花为. 微特电机及系统[M]. 2版. 北京: 中国电力出版社, 2014. [32] Mohd Jani J, Leary M, Subic A.Designing shape memory alloy linear actuators: a review[J]. Journal of Intelligent Material Systems and Structures, 2017, 28(13): 1699-1718. [33] Yuan Han, Fauroux J C, Chapelle F, et al.A review of rotary actuators based on shape memory alloys[J]. Journal of Intelligent Material Systems and Structures, 2017, 28(14): 1863-1885. [34] Otsuka K, Wayman C M.Shape memory mate-rials[M]. New York: Cambridge University Press, 1998. [35] Ikuta K.Micro/miniature shape memory alloy actu-ator[C]//Proceedings IEEE International Conference on Robotics and Automation,Cincinnati, OH, USA, 1990: 2156-2161. [36] Mavroidis C.Development of advanced actuators using shape memory alloys and electrorheological fluids[J]. Research in Nondestructive Evaluation, 2002, 14(1): 1-32. [37] Constantinos M, Pfeiffer C, Mosley M.Conventional actuators, shape memory alloys and electrorheological fluids[J]. Automation, Miniature Robotics and Sensors for Non-Destructive Testing and Evaluation, 2000, 4(3): 189-199. [38] Zhang Daohui, Zhao Xingang, Han Jianda, et al.Active modeling and control for shape memory alloy actuators[J]. IEEE Access, 7: 162549-162558. [39] Fosness E, Peffer A, Denoyer K.Overview of spacecraft deployment and release devices efforts at the air force research laboratory[C]//Space 2000, Albuquerque, New Mexico, USA, 2000: 312-315. [40] Bellini A, Colli M, Dragoni E.Mechatronic design of a shape memory alloy actuator for automotive tumble flaps: a case study[J]. IEEE Transactions on Industrial Electronics, 2009, 56(7): 2644-2656. [41] Hwang D, Ihn Y S, Kim K.Compact modular cycloidal motor with embedded shape memory alloy wires[J]. IEEE Transactions on Industrial Electronics, 2018, 65(5): 4028-4038. [42] Yang Hao, Xu Min, Li Weihua, et al.Design and implementation of a soft robotic arm driven by SMA coils[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6108-6116. [43] Fei Yanqiong, Xu Hongwei.Modeling and motion control of a soft robot[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 1737-1742. [44] Yang Kai.Research and application of new inserted shape memory alloy actuators[J]. IEEE Transactions on Industrial Electronics, 2010, 57(8): 2845-2850. [45] Reinventing the Wheel-NASA[EB/OL]. [2022-9-28].https://www.nasa.gov/specials/wheels/. [46] Abeyaratne R, Knowles J K.On the driving traction acting on a surface of strain discontinuity in a continuum[R]. Defense Technical Information Center, 1988. [47] Patoor E, Eberhardt A, Berveiller M.Micro-mechanical modelling of superelasticity in shape memory alloys[J]. Le Journal De Physique IV, 1996, 6(C1): 277. [48] Sun Qingping, Hwang K C.Micromechanics model-ling for the constitutive behavior of polycrystalline shape memory alloys-I. derivation of general relations[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(1): 1-17. [49] Sun Qingping, Hwang K C.Micromechanics model-ling for the constitutive behavior of polycrystalline shape memory alloys-II. study of the individual phenomena[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(1): 19-33. [50] Huang M, Gao Xiujie, Brinson L C.A multivariant micromechanical model for SMAs part 2: polycrystal model[J]. International Journal of Plasticity, 2000, 16(10-11): 1371-1390. [51] Tanaka K, Nagaki S.A thermomechanical description of materials with internal variables in the process of phase transitions[J]. Ingenieur-Archiv, 1982, 51(5): 287-299. [52] Liang Chen, Rogers C.One-dimensional thermo-mechanical constitutive relations for shape memory materials[C]//31st Structures, Structural Dynamics and Materials Conference, Long Beach, CA, 1990: 1027. [53] Brinson L C.One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable[J]. Journal of Intelligent Material Systems and Structures, 1993, 4(2): 229-242. [54] Elahinia M H, Ahmadian M.An enhanced SMA phenomenological model: II. the experimental study[J]. Smart Materials and Structures, 2005, 14(6): 1309-1319. [55] Lagoudas D C, Bo Zhonghe, Qidwai M A.A unified thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composites[J]. Mechanics of Composite Materials and Structures, 1996, 3(2): 153-179. [56] Al Janaideh M, Rakheja S, Su Chunyi.An analytical generalized Prandtl-ishlinskii model inversion for hysteresis compensation in micropositioning con-trol[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(4): 734-744. [57] Xu Rui, Zhou Miaolei.Elman neural network-based identification of krasnosel's kii-pokrovskii model for magnetic shape memory alloys actuator[J]. IEEE Transactions on Magnetics, 2017, 53(11): 1-4. [58] Hu H, Ben Mrad R.On the classical Preisach model for hysteresis in piezoceramic actuators[J]. Mechatro-nics, 2003, 13(2): 85-94. [59] Elahinia M H, Ashrafiuon H.Nonlinear control of a shape memory alloy actuated manipulator[J]. Journal of Vibration and Acoustics, 2002, 124(4): 566-575. [60] Nikdel N, Nikdel P, Badamchizadeh M A, et al.Using neural network model predictive control for con-trolling shape memory alloy-based manipulator[J]. IEEE Transactions on Industrial Electronics, 2014, 61(3): 1394-1401. [61] Lan C C, Fan C H.An accurate self-sensing method for the control of shape memory alloy actuated flexures[J]. Sensors and Actuators A: Physical, 2010, 163(1): 323-332. [62] Lee S H, Kim S W.Improved position control of shape memory alloy actuator using the self-sensing model[J]. Sensors and Actuators A: Physical, 2019, 297: 111529. [63] Shi Zhenyun, Tian Jiawen, Luo Ruidong, et al.Multifeedback control of a shape memory alloy actuator and a trial application[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(7): 1106-1119. [64] Jiles D C, Atherton D L.Theory of ferromagnetic hysteresis (invited)[J]. Journal of Applied Physics, 1984, 55(6): 2115-2120. [65] Nguyen B K, Ahn K K.Feedforward control of shape memory alloy actuators using fuzzy-based inverse preisach model[J]. IEEE Transactions on Control Systems Technology, 2009, 17(2): 434-441. [66] Tan U X, Latt W T, Shee C Y, et al.Feedforward controller of ill-conditioned hysteresis using singularity-free Prandtl-ishlinskii model[J]. IEEE/ASME Transa-ctions on Mechatronics: a Joint Publication of the IEEE Industrial Electronics Society and the ASME Dynamic Systems and Control Division, 2009, 14(5): 598-605. [67] Wang Y.Methods for modeling and control of systems with hysteresis of shape memory alloy actuators[M]. Montreal: Concordia University, 2007. [68] Ren Beibei, San P P, Ge S S, et al.Adaptive dynamic surface control for a class of strict-feedback nonlinear systems with unknown backlash-like hysteresis[C]//IEEE American Control Conference, St Louis, MO, USA, 2009: 4482-4487. [69] Feng Ying, Rabbath C A, Su Chunyi.Inverse duhem model based robust adaptive control for flap positioning system with SMA actuators[J]. IFAC Proceedings Volumes, 2011, 44(1): 8126-8131. [70] Mishra S K, Gur S, Roy K, et al. Response of bridges isolated by shape memory-alloy rubber bearing[J]. Journal of Bridge Engineering, 2016, 21(3): 4015071.1-4015071.15. [71] Tharayil M L, Alleyne A G.Modeling and control for smart Mesoflap aeroelastic control[J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(1): 30-39. [72] Shameli E, Alasty A, Salaarieh H.Stability analysis and nonlinear control of a miniature shape memory alloy actuator for precise applications[J]. Mechatro-nics, 2005, 15(4): 471-486. [73] Joseph F O M, Kumar M, Franz K, et al. Control of shape memory alloy actuated flexible needle using multimodal sensory feedbacks[J]. Journal of Auto-mation and Control Engineering, 2015, 3(5): 428-434. [74] Martineau S, Burnham K J, Haas O C L, et al. Four-term bilinear PID controller applied to an industrial furnace[J]. Control Engineering Practice, 2004, 12(4): 457-464. [75] Grant D, Hayward V.Variable structure control of shape memory alloy actuators[J]. IEEE Control Systems Magazine, 1997, 17(3): 80-88. [76] Elahinia M H, Seigler T M, Leo D J, et al.Nonlinear stress-based control of a rotary SMA-actuated mani-pulator[J]. Journal of Intelligent Material Systems and Structures, 2004, 15(6): 495-508. [77] Tai N T, Ahn K K.Output feedback direct adaptive controller for a SMA actuator with a Kalman filter[J]. IEEE Transactions on Control Systems Technology, 2012, 20(4): 1081-1091. [78] Silva A F C, da Silva S A, dos Santos A J V, et al. Fuzzy control of a robotic finger actuated by shape memory alloy wires[J]. Journal of Dynamic Systems, Measurement, and Control, 2018, 140(6): 064502. [79] Li Junfeng, Tian Huifang.Position control of SMA actuator based on inverse empirical model and SMC-RBF compensation[J]. Mechanical Systems and Signal Processing, 2018, 108: 203-215. [80] Kinitic automation[EB/OL]. [2021-12-4].https://www.Kiniticsautomation.com/. [81] Miga motor[EB/OL]. [2021-12-4].https://www.migaro-botics.com/. [82] Kim Y, Cheng S S, Desai J P.Active stiffness tuning of a spring-based continuum robot for MRI-guided neurosurgery[J]. IEEE Transactions on Robotics, 2018, 34(1): 18-28. [83] Zhakypov Z, Huang Jianlin, Paik J.A novel torsional shape memory alloy actuator: modeling, characteri-zation, and control[J]. IEEE Robotics & Automation Magazine, 2016, 23(3): 65-74. [84] Hwang D, Higuchi T.A rotary actuator using shape memory alloy (SMA) wires[J]. IEEE/ASME Transa-ctions on Mechatronics, 2014, 19(5): 1625-1635. [85] Zhang X Y, Yan X J.Continuous rotary motor actuated by multiple segments of shape memory alloy wires[J]. Journal of Materials Engineering and Performance, 2012, 21(12): 2643-2649. [86] 李瑞. 形状记忆合金柔性驱动器的特性分析与控制研究[D]. 广州: 华南理工大学, 2019. [87] Kudva J N.Overview of the DARPA smart wing project[J]. Journal of Intelligent Material Systems and Structures, 2004, 15(4): 261-267. [88] Oehler S D, Hartl D J, Lopez R, et al.Design optimization and uncertainty analysis of SMA morphing structures[J]. Smart Materials and Stru-ctures, 2012, 21(9): 094016. [89] Pitt D M, Dunne J P, White E V, et al.Wind tunnel demonstration of the SAMPSON smart inlet[C]//SPIE's 8th Annual International Symposium on Smart Structures and Materials. Proc SPIE 4332, Smart Structures and Materials 2001: Industrial and Com-mercial Applications of Smart Structures Tech-nologies, Newport Beach, CA, USA, 2001: 345-356. [90] Peffer A, Denoyer K, Fosness E, et al.Development and transition of low-shock spacecraft release devices[C]//IEEE Aerospace Conference, Big Sky, MT, USA, 2000: 277-284. [91] Nava N, Collado M, Cabás R.New deployment mechanisms based on SMA technology for space applications[C]//15th European Space Mechanisms & Tribology Symposium, Netherland, 2013: 1-6. [92] James M Conrad.Controlled making a truly auto-nomous robot[M]. New Jersey: IEEE Wiley, 2005. [93] Seok S, Onal C D, Cho K J, et al.Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(5): 1485-1497. [94] Noh M, Kim S W, An S, et al.Flea-inspired catapult mechanism for miniature jumping robots[J]. IEEE Transactions on Robotics, 2012, 28(5): 1007-1018. [95] Wang Zhenlong, Wang Yangwei, Li Jian, et al.A micro biomimetic manta ray robot fish actuated by SMA[C]//IEEE International Conference on Robotics and Biomimetics, Guilin, China, 2009: 1809-1813. [96] Wolfe T B, Faulkner M G, Wolfaardt J.Development of a shape memory alloy actuator for a robotic eye prosthesis[J]. Smart Materials and Structures, 2005, 14(4): 759-768. [97] Yoneyama T, Miyazaki S, Miyazaki S, et al.Shape memory alloys for biomedical applications[M]. Sawston: Woodhead Publishing, 2009. [98] Sheng Jun, Wang Xuefeng, Dickfeld T M L, et al. Towards the development of a steerable and MRI-compatible cardiac catheter for atrial fibrillation treatment[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 4038-4045. [99] Sheng Jun, Gandhi D, Gullapalli R, et al.Develop-ment of a meso-scale SMA-based torsion actuator for image-guided procedures[J]. IEEE Transactions on Robotics: A Publication of the IEEE Robotics and Automation Society, 2017, 33(1): 240-248. [100] Kim B, Lee S, Park J H, et al.Design and fabrication of a locomotive mechanism for capsule-type endos-copes using shape memory alloys (SMAs)[J]. IEEE/ASME Transactions on Mechatronics, 2005, 10(1): 77-86. [101] Salerno M, Zhang Ketao, Menciassi A, et al.A novel 4-DOF origami grasper with an SMA-actuation system for minimally invasive surgery[J]. IEEE Transactions on Robotics, 2016, 32(3): 484-498. [102] Jayatilake D, Isezaki T, Teramoto Y, et al.Robot assisted physiotherapy to support rehabilitation of facial paralysis[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22(3): 644-653. [103] 冯晓彬. 形状记忆合金丝驱动的手指康复机器人设计和分析[D]. 秦皇岛: 燕山大学, 2019. [104] Luchetti T, Zanella A, Biasiotto M, et al.Electrically actuated antiglare rear-view mirror based on a shape memory alloy actuator[J]. Journal of Materials Engin-eering and Performance, 2009, 18(5/6): 717-724. [105] Neugebauer R, Bucht A, Pagel K, et al.Numerical simulation of the activation behavior of thermal shape memory alloys[C]//Industrial and Commercial Appli-cations of Smart Structures Technologies, San Diego, California, USA, 2010: 847594. [106] Jalali M S, Mahanfar A, Menon C, et al.Recon-figurable axial-mode helix antennas using shape memory alloys[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(4): 1070-1077. [107] Mazlouman S J, Mahanfar A, Menon C, et al.Square ring antenna with reconfigurable patch using shape memory alloy actuation[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(12): 5627-5634. [108] Velazquez R, Pissaloux E E, Hafez M, et al.Tactile rendering with shape-memory-alloy pin-matrix[J]. IEEE Transactions on Instrumentation and Measure-ment, 2008, 57(5): 1051-1057. [109] Cambridge mechatronics[EB/OL]. [2021-12-4].https://www.Cambridgemechatronics.com/. |
|
|
|