|
|
Online Parameter Identification of Permanent Magnet Synchronous Motor Based on Fast Particle Swarm Optimization Algorithm with Effective Information Iterated |
Li Jie, Yang Shuying, Xie Zhen, Zhang Xing |
College of Electrical Engineering and Automation Hefei University of Technology Hefei 230009 China |
|
|
Abstract In order to solve the problem of large computation and long running time in the parameter identification of permanent magnet synchronous motor (PMSM) by particle swarm optimization algorithm (PSO), a fast particle swarm optimization algorithm (FPSO) is proposed by introducing the effective parameter information into the present searching process. The proposed FPSO algorithm can quickly identify the parameters of the PMSM under the maximum torque per ampere (MTPA) operation online. A new fitness function was constructed based on the dynamic voltage equations, and the converging performance of the stand particle swarm optimization algorithm (SPSO) was improved by introducing an effective motor parameter information and a new iteration ending condition. Meanwhile, to overcome the negative effects of the voltage estimation errors on the identification accuracy, in addition to the nonlinear compensation, a preprocessing scheme of sampled data was proposed, where the data in the certain range of current zero-crossing were removed. The experimental results show that the scheme can identify the direct axis and quadrature axis inductances and the permanent magnet flux quickly and accurately without affecting the normal operation of the system.
|
Received: 15 September 2021
|
|
|
|
|
[1] 夏长亮, 王东, 程明, 等. 高效能电机系统可靠运与智能控制基础研究进展[J]. 中国基础科学, 2017, 19(1): 16-23. Xia Changliang, Wang Dong, Cheng Ming, et al.Advancements of basic researches on high-efficiency motor system's reliability and intelligence control[J]. China Basic Science, 2017, 19(1): 16-23. [2] Underwood S J, Husain I.Online parameter esti- mation and adaptive control of permanent-magnet synchronous machines[J]. IEEE Transactions on Industrial Electronics, 2010, 57(7): 2435-2443. [3] 金宁治, 周凯, Herbert Ho-Ching IU. 带有自适应参数辨识的IPMSM MTPA控制[J]. 电机与控制学报, 2020, 24(7): 90-101. Jin Ningzhi, Zhou Kai, Herbert Ho-Ching IU. Model reference adaptive identification based MTPA control method for interior PM synchronous motor[J]. Electric Machines and Control, 2020, 24(7): 90-101. [4] 连传强, 肖飞, 高山, 等. 基于实验标定及双时间尺度随机逼近理论的内置式永磁同步电机参数辨识[J]. 中国电机工程学报, 2019, 39(16): 4892-4898, 4991. Lian Chuanqiang, Xiao Fei, Gao Shan, et al.Parameter identification for interior permanent magnet synchronous motor based on experimental calibration and stochastic approximation theory with two time scales[J]. Proceedings of the CSEE, 2019, 39(16): 4892-4898, 4991. [5] Dang Dongquang, Rafaq M S, Choi H H, et al.Online parameter estimation technique for adaptive control applications of interior PM synchronous motor drives[J]. IEEE Transactions on Industrial Electronics, 2016, 63(3): 1438-1449. [6] Bui M X, Faz Rahman M, Guan Deqi, et al.A new and fast method for on-line estimation of d and q axes inductances of interior permanent magnet synchronous machines using measurements of current derivatives and inverter DC-bus voltage[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7488-7497. [7] Liu Kan, Zhang Qiao, Chen Jintao, et al.Online multiparameter estimation of nonsalient-pole PM synchronous machines with temperature variation tracking[J]. IEEE Transactions on Industrial Elec- tronics, 2011, 58(5): 1776-1788. [8] Liu Kan, Zhu Ziqiang.Position-offset-based parameter estimation using the adaline NN for condition moni- toring of permanent-magnet synchronous machines[J]. IEEE Transactions on Industrial Electronics, 2015, 62(4): 2372-2383. [9] 吴春, 赵宇纬, 孙明轩. 采用测量电压的永磁同步电机多参数在线辨识[J]. 中国电机工程学报, 2020, 40(13): 4329-4339. Wu Chun, Zhao Yuwei, Sun Mingxuan.Multiparameter online identification for permanent magnet syn- chronous machines using voltage measurements[J]. Proceedings of the CSEE, 2020, 40(13): 4329-4339. [10] Wang Yuanlin, Xie Wei, Wang Xiaocan, et al.A precise voltage distortion compensation strategy for voltage source inverters[J]. IEEE Transactions on Industrial Electronics, 2018, 65(1): 59-66. [11] 史婷娜, 刘华, 陈炜, 等. 考虑逆变器非线性因素的表贴式永磁同步电机参数辨识[J]. 电工技术学报, 2017, 32(7): 77-83. Shi Tingna, Liu Hua, Chen Wei, et al.Parameter identification of surface permanent magnet syn- chronous machines considering voltage-source inverter nonlinearity[J]. Transactions of China Electro- technical Society, 2017, 32(7): 77-83. [12] 陈斌, 王婷, 吕征宇, 等. 电压型逆变器非线性的分析及补偿[J]. 电工技术学报, 2014, 29(6): 24-30. Chen Bin, Wang Ting, Lü Zhengyu, et al.The analysis and compensation of voltage source inverter nonlinearity[J]. Transactions of China Electro- technical Society, 2014, 29(6): 24-30. [13] 傅小利, 顾红兵, 陈国呈, 等. 基于柯西变异粒子群算法的永磁同步电机参数辨识[J]. 电工技术学报, 2014, 29(5): 127-131. Fu Xiaoli, Gu Hongbing, Chen Guocheng, et al.Permanent magnet synchronous motors parameters identification based on cauchy mutation particle swarm optimization[J]. Transactions of China Elec- trotechnical Society, 2014, 29(5): 127-131. [14] 程善美, 张益. 基于协同粒子群算法的PMSM在线参数辨识[J]. 电气传动, 2012, 42(11): 3-6. Cheng Shanmei, Zhang Yi.Collaborative particle swarm optimization based online parameter identi- fication applied to PMSM[J]. Electric Drive, 2012, 42(11): 3-6. [15] 刘细平, 胡卫平, 丁卫中, 等. 永磁同步电机多参数辨识方法研究[J]. 电工技术学报, 2020, 35(6): 1198-1207. Liu Xiping, Hu Weiping, Ding Weizhong, et al.Research on multi-parameter identification method of permanent magnet synchronous motor[J]. Transa- ctions of China Electrotechnical Society, 2020, 35(6): 1198-1207. [16] Kennedy J, Eberhart R.Particle swarm optimi- zation[C]//ICNN'95-International Conference on Neural Networks, Australia, 1995: 1942-1948. [17] Xu Guiping, Cui Quanlong, Shi Xiaohu, et al.Particle swarm optimization based on dimensional learning strategy[J]. Swarm and Evolutionary Computation, 2019, 45: 33-51. [18] Cao Yulian, Zhang Han, Li Wenfeng, et al.Com- prehensive learning particle swarm optimization algorithm with local search for multimodal fun- ctions[J]. IEEE Transactions on Evolutionary Com- putation, 2019, 23(4): 718-731. [19] 刘朝华, 李小花, 周少武, 等. 面向永磁同步电机参数辨识的免疫完全学习型粒子群算法[J]. 电工技术学报, 2014, 29(5): 118-126. Liu Zhaohua, Li Xiaohua, Zhou Shaowu, et al.Comprehensive learning particle swarm optimization algorithm based on immune mechanism for permanent magnet synchronous motor parameter identification[J]. Transactions of China Electrotechnical Society, 2014, 29(5): 118-126. [20] 周建萍, 李欣煜, 茅大钧, 等. 基于改进PSO算法的非理想电压条件下电力弹簧控制策略[J]. 电力系统自动化, 2018, 42(22): 165-171. Zhou Jianping, Li Xinyu, Mao Dajun, et al.Control strategy of electric spring under non-ideal voltage conditions based on improved PSO algorithm[J]. Automation of Electric Power Systems, 2018, 42(22): 165-171. |
|
|
|