|
|
Analysis of Interaction Mechanism between Icing and Torsion of Single Transmission Lines |
Han Xingbo1, Wu Haitao2, Guo Sihua2, Jiang Xingliang3, Wang Yujie4 |
1. Chongqing Engineering Laboratory for Transportation Engineering Application Robot Chongqing Jiaotong University Chongqing 400074 China; 2.State Grid Chongqing Electric Power Company Chongqing Electric Power Research Institute Chongqing 401123 China; 3. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China; 4. School of Mechatronics and Vehicle Engineering Chongqing Jiaotong University Chongqing 400074 China |
|
|
Abstract Icing threatens the safe and stable operation of transmission lines. Accurate prediction of the icing process of conductor can help the work of anti-icing and disaster reduction of transmission lines. Generally, the icing of conductor is accompanied by the torsion process of conductor. Because of the interaction of conductor torsion and icing, there is a big difference of the icing shape and rate between different positions on conductors. In order to improve the accuracy of numerical calculation of conductor icing, a dynamic numerical calculation model of conductor icing torsion is established based on hydrodynamics and basic mechanics of conductor torsion in this paper. Comprehensively, the model takes the effects of torsion angles and torsion icing shapes on the icing process of conductor into consideration, including the effects on the trajectories of water droplets in the air. Through the simulation, the change law of torsion of three different types of conductors after icing at different positions and the influence of conductor torsion on icing are analyzed. The results show that the torsion angle of the conductor increases from both ends to the center after icing; compared with the untwisted conductor, the droplet collision range and icing rate of the twisted conductor are larger; and there is a great difference between the icing shape at the end and the center of twisted conductors. The icing shape at the end of conductors tends to be wing shaped while the icing shape tends to be a cylinder at the middle. When the wind velocity and the median volume diameter of water droplets are both large, the icing rate of conductors with a larger diameter under torsion condition is faster.
|
Received: 19 July 2021
|
|
|
|
|
[1] 蒋兴良, 邹佳玉, 韩兴波, 等. 自然环境绝缘子长串覆冰直流闪络特性[J]. 电工技术学报, 2020, 35(12): 2662-2671. Jiang Xingliang, Zou Jiayu, Han Xingbo, et al.DC flashover characteristics of natural environment insulators covered with ice[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2662-2671. [2] 孙才新. 重视和加强防止复杂气候环境及输变电设备故障导致电网大面积事故的安全技术研究[J]. 中国电力, 2004, 37(6): 5-12. Sun Caixin.Strengthen research of safety technology to prevent large-scale accidents caused by complex climate environment and power transmission and transformation equipment failure[J]. Electric Power Construction, 2004, 37(6): 5-12. [3] 翁秉钧, 杨耿杰, 高伟, 等. 一种基于改进k均值聚类的输电线路覆冰状态侦测方法[J]. 电气技术, 2021, 22(5): 43-49. Weng Bingjun, Yang Gengjie, Gao Wei, et al.A detection method for transmission line icing via improved k-means clustering[J]. Electrical Engineering, 2021, 22(5): 43-49. [4] 胡毅. 电网大面积冰灾分析及对策探讨[J]. 高电压技术, 2008, 34(2): 215-219. Hu Yi.Analysis and countermeasures discussion for large area icing accident on power grid[J]. High Voltage Engineering, 2008, 34(2): 215-219. [5] 舒立春, 刘延庆, 蒋兴良, 等. 盘型悬式绝缘子串自然覆冰直流放电发展路径特点及影响因素分析[J]. 电工技术学报, 2021, 36(8): 1726-1733. Shu Lichun, Liu Yanqing, Jiang Xingliang, et al.Analysis on the dc discharge path of ice-covered disc type suspension insulators under natural conditions[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1726-1733. [6] 黄亚飞, 蒋兴良, 任晓东, 等. 采用涡流自热环防止输电线路冰雪灾害的方法研究[J]. 电工技术学报, 2021, 36(10): 2169-2177. Huang Yafei, Jiang Xingliang, Ren Xiaodong, et al.Study on preventing icing disasters of transmission lines by use of eddy self-heating ring[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2169-2177. [7] Lenhard R.An indirect method for estimating the weight of glaze on wires[J]. Bulletin of the American Meteorological Society, 1955, 36(1): 1-5. [8] Jones K.A simple model for freezing rain ice loads[J]. Atmospheric Research, 1998, 46(1-2): 87-97. [9] Makkonen L.Modeling of ice accretion on wires[J]. Journal of Applied Meteorology, 1984, 23(6): 929-939. [10] Fu Ping, Farzaneh M, Bouchard G.Two-dimensional modelling of the ice accretion process on transmission line wires and conductors[J]. Cold Regions Science and Technology, 2006, 46(2): 132-146. [11] 郭昊, 刘沛清, 屈秋林, 等. 输电线雾凇覆冰的工程估算方法[J]. 高电压技术, 2011, 37(4): 1041-1049. Guo Hao, Liu Peiqing, Qu Qiulin, et al.Estimation engineering method of rime accretion process on transmission lines[J]. High Voltage Engineering. 2011, 37(4): 1041-1049. [12] 陈凌, 蒋兴良, 胡琴, 等. 自然条件下基于旋转多圆柱体覆冰厚度的绝缘子覆冰质量估算[J]. 高电压技术, 2011, 37(6): 1371-1376. Chen Ling, Jiang Xingliang, Hu Qin, et al.Evaluation of ice mass on insulator under natural icing condition based on the ice thickness accumulated on rotating multi-cylinder[J]. High Voltage Engineering, 2011, 37(6): 1371-1376. [13] 蒋兴良, 申强, 舒立春, 等. 利用旋转多圆柱导体覆冰质量预测湿增长过程覆冰参数[J]. 高电压技术, 2009, 35(12): 3071-3076. Jiang Xingliang, Shen Qiang, Shu Lichun, et al.Prediction of wet growth icing parameters by icing quantity of rotating multi-cylindrical conductors[J]. High Voltage Engineering, 2009, 35(12): 3071-3076. [14] 韩兴波, 蒋兴良, 毕聪来, 等. 基于分散型旋转圆导体的覆冰参数预测[J]. 电工技术学报, 2019, 34(5): 1096-1105. Han Xingbo, Jiang Xingliang, Bi Conglai, et al.Prediction of icing environment parameters based on decentralized rotating conductors[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 1096-1105. [15] Qing He, Jian Zhang, Mengyan Deng, et al.Rime icing on bundled conductors[J]. Cold Regions Science and Technology, 2019, 158: 230-236. [16] Zhang Jian, Makkonen L, He Qing.A 2d numerical study on the effect of conductor shape on icing collision efficiency[J]. Cold Regions Science and Technology, 2017, 143: 52-58. [17] 蒋兴良, 姜方义, 汪泉霖, 等. 基于最优时间步长模型的输电导线雾凇覆冰预测[J]. 电工技术学报, 2018, 33(18): 4408-4418. Jiang Xingliang, Jiang Fangyi, Wang Quanlin, et al.Prediction of rime accretion on transmission line based on optimal time step model[J]. Transactions of China Electrotechnical Society, 2018, 33(18): 4408-4418. [18] 梁曦东, 李雨佳, 张轶博, 等. 输电导线的覆冰时变仿真模型[J]. 高电压技术, 2014, 40(2): 336-343. Liang Xidong, Li Yujia, Zhang Yibo, et al.Time-dependent simulation model of ice accretion on transmission line[J]. High Voltage Engineering, 2014, 40(2): 336-343. [19] Keutgen R, Lilien J, Yukino T.Transmission line torsional stiffness confrontation of field-tests line and finite element simulations[J]. IEEE Transactions on Power Delivery, 1999, 14(2): 567-578. [20] Wang J, Lilien J.A new theory for torsional stiffness of multi-span bundle overhead transmission lines[J]. IEEE Transactions on Power Delivery, 1998, 13(4): 1405-1411. [21] 傅观君, 王黎明, 关志成, 等. 架空输电线路分裂导线扭转刚度及舞动机理分析[J]. 高电压技术, 2013, 39(5): 1273-1280. Fu Guanjun, Wang Liming, Guan Zhicheng, et al.Torsional stiffness and galloping mechanism analysis on bundle conductors for overhead transmission lines[J]. High Voltage Engineering, 2013, 39(5): 1273-1280. [22] 朱宽军, 刘彬. 架空输电线路分裂导线扭转刚度的计算[J]. 电网技术, 2010, 34(3): 210-214. Zhu Kuanjun, Liu Bin.Calculation of torsional stiffness of bundle conductors in overhead transmission lines[J]. Power System Technology, 2010, 34(3): 210-214. [23] 胡琴, 于洪杰, 徐勋建, 等. 分裂导线覆冰扭转特性分析及等值覆冰厚度计算[J]. 电网技术, 2016, 40(11): 3615-3620. Hu Qin, Yu Hongjie, Xu Xunjian, et al.Study on torsion characteristic and equivalent ice thickness of bundle conductors[J]. Power System Technology, 2016, 40(11): 3615-3620. [24] 李清, 马伦, 解健, 等. 大档距多分裂输电导线扭转刚度计算分析[J]. 高压电器, 2020, 56(2): 158-162. Li Qing, Ma Lun, Xie Jian, et al.Calculation and analysis on torsional stiffness of large-span multi-conductor bundle[J]. High Voltage Apparatus, 2020, 56(2): 158-162. [25] 樊社新, 何国金, 廖小平, 等. 结冰导线扭转刚度试验[J]. 中国电力, 2005, 38(10): 45-47. Fan Shexin, He Guojin, Liao Xiaoping, et al.Tests on tensional stiffhess of iced conductor[J]. Electric Power, 2005, 38(10): 45-47. [26] 解健. 大档距多分裂导线扭转及翻转特性研究[D]. 杭州: 浙江大学, 2019. [27] Skelton P, Poots G.Snow accretion on overhead line conductors stiffness[J]. Cold Regions Science and Technology, 1991(19): 301-316. [28] Fu Ping, Gilles B, Farzaneh M.Simulation of ice accumulation on transmission line cables based on time-dependent airflow and water droplet trajectory calculations[C]//Asme International Conference on Offshore Mechanics & Arctic Engineering, Vancouver, CA, 2004: 971-977. [29] Nigol O, Buchan P. Conductor galloping-part Ⅱ torsional mechanism[J]. IEEE Transactions on Power Apparatus and Systems, 1981, PAS-100(2): 708-720. |
|
|
|