|
|
High Voltage Frequency Domain Dielectric Spectroscopy Diagnosis Method for Thermal Aging of XPLE Cables |
Wang Haoyue1, Wang Xiaowei1,2, Sun Maolun1, Wang Wei1, Li Chengrong1 |
1.State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 2. State Grid Shandong Electric Power Company Heze 274000 China |
|
|
Abstract Thermal aging is the important reasons for the degradation of XLPE cable insulation. The timely detection and treatment are of great significance for system operation safety. The research on diagnosis of XLPE cable overall and local aging using high voltage frequency domain spectroscopy (FDS) is carried out. The high voltage FDS (0.01Hz~0.1Hz, detection voltage up to U0) of 10 kV cables with overall length, with ratio of local thermal aging section to intact cable of 10% and 4% at different thermal aging stages are measured. Besides, the layering degree of the high voltage FDS curves L, slope and integral, and nonlinearity η are defined and analyzed. The effects of local aging ratio on the dielectric parameters are also studied. The results show that high voltage FDS is sensitive to both overall and local thermal aging, The L parameters of cable samples with overall and local thermal aging defects with a certain degree are greater than 1, so L matrix can be used as the diagnostic parameter of cable aging. Nonlinearity η is sensitive to the change of aging degree, and it is less affected by the proportion of local defects, so it can be used as a diagnostic characteristic of cable aging degree. With the decrease of the aging section proportion, the curves show layered characteristics later, and the integral value of dielectric spectrum curve and the slope of the curve are reduced. It can be determined whether the cable is thermal aged by combining the value of η and the range of slope and integral. The hysteresis phenomenon can be used as basis to distinguish thermal aging and water tree aging of XLPE cable.
|
Received: 23 June 2021
|
|
|
|
|
[1] 邓雯玲, 卢继平, 苟鑫, 等. 适用于高压电缆-架空线混合线路的新型重合闸方案[J]. 电力系统自动化, 2021, 45(12): 126-132. Deng Wenling, Lu Jiping, Gou Xin, et al.Novel reclosing scheme for hybird lines with high-voltage cable and overhead lines[J]. Automation of Electric Power Systems, 2021, 45(12): 126-132. [2] 王孟夏, 周生远, 杨明, 等. 计及海底电缆热特性的可接纳海上风电装机容量评估方法[J]. 电力系统自动化, 2021, 45(6): 195-202. Wang Mengxia, Zhou Shengyuan, Yang Ming, et al.Assessment method for acceptable installed capacity of offshore wind farms considering thermal characteristics of submarine cables[J]. Automation of Electric Power Systems, 2021, 45(6): 195-202. [3] 朱煜峰, 许永鹏, 陈孝信, 等. 基于卷积神经网络的直流XLPE电缆局部放电模式识别技术[J]. 电工技术学报, 2020, 35(3): 659-668. Zhu Yufeng, Xu Yongpeng, Chen Xiaoxin, et al.Pattern recognition of partial discharges in DC XLPE cables based on convolutional neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 659-668. [4] 周凯, 李诗雨, 尹游, 等. 退运中压XLPE和EPR电缆老化特性分析[J]. 电工技术学报, 2020, 35(24): 5197-5206. Zhou Kai, Li Shiyu, Yin You, et al.Analysis of aging characteristics of medium voltage XLPE and EPR retired cables[J]. Transactions of China Electrotechnical Society, 2020, 35(24): 5197-5206. [5] Nobrega A M, Martinez M L B, de Queiroz A A A. Investigation and analysis of electrical aging of XLPE insulation for medium voltage covered conductors manufactured in Brazil[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(2): 628-640. [6] Ouyang Benhong, Li Huan, Zhang Xu, et al.The role of micro-structure changes on space charge distribution of XLPE during thermo-oxidative ageing[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(6): 3849-3859. [7] Liu Yunpeng, Liu Hechen, Yu Lichao, et al.Effect of thermal stress on the space charge distribution of 160 kV HVDC cable insulation material[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(3): 1355-1364. [8] Kemari Y, Mekhaldi A, Teyssèdre G, et al.Correlations between structural changes and dielectric behavior of thermally aged XLPE[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(6): 1859-1866. [9] 陈曦, 骆高超, 曹杰, 等. 基于改进K-近邻算法的XLPE电缆气隙放电发展阶段识别[J]. 电工技术学报, 2020, 35(23): 5015-5024. Chen Xi, Luo Gaochao, Cao Jie, et al.Development stage identification of XLPE cable air-gap discharge based on improved K-nearest neighbor algorithm[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 5015-5024. [10] 尹游, 周凯, 李诗雨, 等. 基于极化去极化电流法的水树老化XLPE电缆界面极化特性分析[J]. 电工技术学报, 2020, 35(12): 2643-2651. Yin You, Zhou Kai, Li Shiyu, et al.Interface polarization characteristics of water tree aged XLPE cables based on polarization and depolarization current method[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2643-2651. [11] Al-Arainy A, Malik N H, Qureshi M I, et al.The performance of strippable and bonded screened medium-voltage XLPE-insulated cables under long-term accelerated aging[J]. IEEE Transactions on Power Delivery, 2007, 22(2): 744-751. [12] 谢声益, 杨帆, 黄鑫, 等. 基于太赫兹时域光谱技术的交联聚乙烯电缆绝缘层气隙检测分析[J]. 电工技术学报, 2020, 35(12): 2698-2707. Xie Shengyi, Yang Fan, Huang Xin, et al.Air gap detection and analysis of XLPE cable insulation based on terahertz time domain spectroscopy[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2698-2707. [13] 周利军, 王媚, 周韫捷, 等. 介电谱用于评估XLPE电缆绝缘劣化状态的研究[J]. 绝缘材料, 2019, 52(1): 52-56. Zhou Lijun, Wang Mei, Zhou Yunjie, et al.Deterioration condition evaluation of XLPE cable insulation by dielectric spectroscopy[J]. Insulating Materials, 2019, 52(1): 52-56. [14] Werelius P.Development and application of high voltage dielectric spectroscopy for diagnosis of medium voltage XLPE cables[D]. Stockholm: Royal Institute of Technology(KTH), 2001. [15] Werelius P, Tharning P, Eriksson R, et al.Dielectric spectroscopy for diagnosis of water tree deterioration in XLPE cables[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2001, 8(1): 27-42. [16] Pedersen K, Sedding H, Fenger M, et al.Laboratory results from dielectric spectroscopy of field aged XLPE cables with respect to water trees[C]// Conference Record of the 2006 IEEE International Symposium on Electrical Insulation, Toronto, ON, Canada, 2006: 509-514. [17] JWG D1/B1.20-493 493 Non-destructive water-Tree detection in XLPE cable insulation [R]. CIGRE, 2012. [18] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 额定电压1kV(Um=1.2kV)到35kV(Um= 40.5kV)挤包绝缘电力电缆及附件第2部分:额定电压6kV(Um=7.2kV)到30kV: GB/T 12706.2—2020[S]. 北京: 中国标准出版社, 2021. [19] 国家质量监督检验检疫总局. 电气绝缘材料耐热性第1部分:老化程序和试验结果的评定: GB/T 11026.1—2016[S]. 北京: 中国标准出版社, 2017. [20] 李康乐, 周凯, 张桥峰, 等. 水树生长中XLPE晶区破坏现象及其对水树生长速率的影响[J]. 高电压技术, 2021, 47(11): 4095-4103. Li Kangle, Zhou Kai, Zhang Qiaofeng, et al.Phenomenon of XLPE crystalline region damage in water tree propagation and its influence on propagation rate of water trees[J]. High Voltage Engineering, 2021, 47(11): 4095-4103. [21] Guide for Field Testing of Shielded Power Cable Systems Using Very Low Frequency (VLF) (Less than 1 Hz): IEEE 400.2: 2013 than 1 Hz): IEEE 400.2: 2013[S]. Institute of Electrical & Electronics Engineers, 2013. [22] 方俊鑫, 殷之文. 电介质物理学[M]. 北京: 科学出版社, 1989. [23] Perkel J, Del Valle Y, Hampton R N, et al.Interpretation of dielectric loss data on service aged polyethylene based power cable systems using VLF test methods[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(5): 1699-1711. [24] Zaengl W S.Dielectric spectroscopy in time and frequency domain for HV power equipment. I. theoretical considerations[J]. IEEE Electrical Insulation Magazine, 2003, 19(5): 5-19. [25] Hvidsten S, Ildstad E, Sletbak J, et al.Understanding water treeing mechanisms in the development of diagnostic test methods[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1998, 5(5): 754-760. [26] 赵威, 周凯, 刘凡, 等. 在XLPE电缆加速老化过程中理解水树的自愈性[J]. 电工技术学报, 2014, 29(6): 311-317, 332. Zhao Wei, Zhou Kai, Liu Fan, et al.Understanding self-healing of water tree in process of accelerated aging of XLPE cables[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 311-317, 332. [27] Zaengl W S.Applications of dielectric spectroscopy in time and frequency domain for HV power equipment[J]. IEEE Electrical Insulation Magazine, 2003, 19(6): 9-22. |
|
|
|