|
|
Parameter Setting Method and Field Application of Reactive Power Damping Controller for Flexible Excitation System |
Zhang Jiancheng1, Zhang Tiantian2, Xiong Hongtao1, Han Bing3, Su Chengfeng4 |
1.State Grid Zhejiang Electric Power Research Institute Hangzhou 310014 China; 2. State Key Laboratory of Advanced Electromagnetic Engineering and Technology Huazhong University of Science and Technology Wuhan 430074 China; 3. NR Electric Co. Ltd Nanjing 211102 China; 4. Wenzhou Baizhangji Hydropower Station Wenzhou 325300 China |
|
|
Abstract Based on the verified complex torque model, the parameter setting method of reactive power damping controller (RPDC) for flexible excitation system is proposed in this paper. The Philips-Heffron model with flexible excitation system is built by the linearized modeling method, and the small perturbation complex torque models of both PSS control channel and RPDC control channel are deduced. Then, the quantitative analysis of different influencing factors are carried out. The complex torque model is verified by the measured uncompensated phase-frequency characteristic of PSS control channel. Based on the verified complex torque model, the lead-lag parameters of RPDC are adjusted to achieve the maximum damping torque. The field test results show that, using the proposed parameter setting method, the local machine frequency power oscillation can be effectively suppressed by the RPDC, which is also the first time to successfully apply RPDC in practice and lays a good foundation to take the advantage of double damping channels of flexible excitation system for suppressing the wider frequency power oscillation in new power system.
|
Received: 29 October 2021
|
|
|
|
|
[1] 刘取. 电力系统稳定性及发电机励磁控制[M]. 北京: 中国电力出版社, 2007. [2] 张宝, 丁阳俊, 顾正皓, 等. 基于抑制电力系统低频振荡的火电机组控制方式优化[J]. 中国电力, 2020, 53(2): 137-141, 149. Zhang Bao, Ding Yangjun, Gu Zhenghao, et al.Optimization on the control mode of thermal power unit to suppress low frequency oscillation of power system[J]. Electric Power, 2020, 53(2): 137-141, 149. [3] 杜夏冰, 郭春义, 赵成勇, 等. 水电机组经高压直流外送系统建模及多频段振荡模态分析[J]. 电力系统自动化, 2022, 46(4): 75-83. Du Xiabing, Guo Chunyi, Zhao Chengyong, et al.Modeling and multi-frequency oscillation mode analysis of hydropower unit integration through HVDC system[J]. Automation of Electric Power Systems, 2022, 46(4): 75-83. [4] 刘春晓, 张俊峰, 陈亦平, 等. 异步联网方式下云南电网超低频振荡的机理分析与仿真[J]. 南方电网技术, 2016, 10(7): 29-34. Liu Chunxiao, Zhang Junfeng, Chen Yiping, et al.Mechanism analysis and simulation on ultra-low frequency oscillation of Yunnan power grid in asynchronous interconnection mode[J]. Southern Power System Technology, 2016, 10(7): 29-34. [5] 岳雷, 薛安成, 李志强, 等. 水轮发电机调速系统对超低频振荡的影响及模型适用性分析[J]. 中国电机工程学报, 2019, 39(1): 227-235. Yue Lei, Xue Ancheng, Li Zhiqiang, et al.Effects on extra-low frequency oscillation caused by hydro generator governor system and model suitability analysis[J]. Proceedings of the CSEE, 2019, 39(1): 227-235. [6] 易建波, 张国洲, 张鹏, 等. 超低频振荡阻尼控制中的水轮机调速系统参数双层优化策略[J]. 电工技术学报, 2022, 37(5): 1219-1228. Yi Jianbo, Zhang Guozhou, Zhang Peng, et al.Two-layer optimization strategy of hydraulic turbine governing system parameters in ultra-low frequency oscillation damping control[J]. Transactions of China Electrotechnical Society, 2022, 37(5): 1219-1228. [7] 薛安成, 王嘉伟. 基于非光滑分岔的单机水电系统超低频频率振荡机理分析[J]. 电工技术学报, 2020, 35(7): 1489-1497. Xue Ancheng, Wang Jiawei.Mechanism analysis of ultra-low frequency oscillation of single hydropower system based on non-smooth bifurcation[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1489-1497. [8] 张桂南, 刘志刚, 向川, 等. 高铁车网耦合系统电压低频振荡现象机理研究[J]. 电网技术, 2015, 39(7): 1956-1962. Zhang Guinan, Liu Zhigang, Xiang Chuan, et al.Mechanism on voltage low frequency oscillation of high-speed railway traction network and EMU coupling system[J]. Power System Technology, 2015, 39(7): 1956-1962. [9] 杜文娟, 毕经天, 王相锋, 等. 电力系统低频功率振荡研究回顾[J]. 南方电网技术, 2016, 10(5): 59-67. Du Wenjuan, Bi Jingtian, Wang Xiangfeng, et al.Review of studies on low frequency power oscillations of power systems[J]. Southern Power System Technology, 2016, 10(5): 59-67. [10] 张爱军, 李丹丹, 张清波, 等. 基于矢量裕度法的风电并网对低频振荡模式影响分析[J]. 电力系统自动化, 2021, 45(2): 122-129. Zhang Aijun, Li Dandan, Zhang Qingbo, et al.Analysis of influence of wind power grid connection on low-frequency oscillation mode based on vector margin method[J]. Automation of Electric Power Systems, 2021, 45(2): 122-129. [11] 李明节, 于钊, 许涛, 等. 新能源并网系统引发的复杂振荡问题及其对策研究[J]. 电网技术, 2017, 41(4): 1035-1042. Li Mingjie, Yu Zhao, Xu Tao, et al.Study of complex oscillation caused by renewable energy integration and its solution[J]. Power System Technology, 2017, 41(4): 1035-1042. [12] 肖湘宁, 罗超, 廖坤玉. 新能源电力系统次同步振荡问题研究综述[J]. 电工技术学报, 2017, 32(6): 85-97. Xiao Xiangning, Luo Chao, Liao Kunyu.Review of the research on subsynchronous oscillation issues in electric power system with renewable energy sources[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 85-97. [13] 王洋, 杜文娟, 王海风. 风电并网系统次同步振荡频率漂移问题[J]. 电工技术学报, 2020, 35(1): 146-157. Wang Yang, Du Wenjuan, Wang Haifeng.Frequency drift of sub-synchronous oscillation in wind turbine generator integrated power system[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 146-157. [14] 颜湘武, 常文斐, 崔森, 等. 基于线性自抗扰控制的SVC抑制弱交流风电系统次同步振荡策略[J]. 电工技术学报, 2021, DOI:10.19595/j.cnki.1000-6753.tces.210537. Yan Xiangwu, Chang Wenfei, Cui Sen, et al.sub-synchronous oscillation suppression strategy of weak AC wind power system with SVC based on linear active disturbance rejection control[J]. Transactions of China Electrotechnical Society, 2021, DOI: 10.19595/j.cnki.1000-6753.tces.210537. [15] 高本锋, 王飞跃, 于弘洋, 等. 应用静止同步串联补偿器抑制风电次同步振荡的方法[J]. 电工技术学报, 2020, 35(6): 1346-1356. Gao Benfeng, Wang Feiyue, Yu Hongyang, et al.The suppression method of wind power sub-synchronous oscillation using static synchronous series compensator[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1346-1356. [16] 赵晓伟, 谢欢, 吕思昕, 等. 电力系统稳定器PSS4B的参数整定及现场试验[J]. 电网技术, 2016, 40(2): 508-513. Zhao Xiaowei, Xie Huan, Lü Sixin, et al.Parameter setting and on-site test of power system stabilizer-PSS4B[J]. Power System Technology, 2016, 40(2): 508-513. [17] 吴跨宇, 卢岑岑, 吴龙, 等. 一种新型双信号电力系统稳定器及其仿真研究[J]. 电网技术, 2016, 40(5): 1462-1468. Wu Kuayu, Lu Cencen, Wu Long, et al.A new PSS with double-signal input and its simulation research[J]. Power System Technology, 2016, 40(5): 1462-1468. [18] 沈轶君, 吴跨宇, 韩兵, 等. 新型电力系统稳定器动模试验研究[J]. 浙江电力, 2018, 37(10): 31-37. Shen Yijun, Wu Kuayu, Han Bing, et al.Study on dynamic model test for a new type of power system stabilizer[J]. Zhejiang Electric Power, 2018, 37(10): 31-37. [19] 吴跨宇, 张建承, 吴龙, 等. 基于多电平拓扑技术的新型柔性励磁系统[J]. 中国电力, 2019, 52(11): 100-106. Wu Kuayu, Zhang Jiancheng, Wu Long, et al.Novel flexible excitation system based on multilevel topology technology[J]. Electric Power, 2019, 52(11): 100-106. [20] 吴跨宇, 张甜甜, 张建承, 等. 柔性励磁系统提升低频段阻尼的优化设计方法[J]. 电机与控制学报, 2020, 24(9): 105-114. Wu Kuayu, Zhang Tiantian, Zhang Jiancheng, et al.Optimum design method of flexible excitation system for improving damping of low frequency oscillation[J]. Electric Machines and Control, 2020, 24(9): 105-114. [21] Zhang Tiantian, Cheng Liping, He Silin, et al.Optimal design method of flexible excitation system for improving power system stability[J]. IEEE Transactions on Industry Applications, 2021, 57(3): 2120-2128. [22] 吴跨宇, 陈新琪. 运行工况对电力系统稳定器PSS现场参数整定影响的研究[J]. 浙江电力, 2011, 30(3): 1-5. Wu Kuayu, Chen Xinqi.Research on influence of working conditions on on-site parameter setting for power system stabilizer[J]. Zhejiang Electric Power, 2011, 30(3): 1-5. [23] 吴龙, 孙祥祥, 施一峰. 发电机无补偿相频特性测量理论与实践[J]. 浙江电力, 2020, 39(8): 7-12. Wu Long, Sun Xiangxiang, Shi Yifeng.Theory and practice of uncompensated phase-frequency characteristics measurement of generator[J]. Zhejiang Electric Power, 2020, 39(8): 7-12. |
|
|
|