|
|
Research on Diameter Selection Method of Rotating Multi-Conductor for Measurement of Icing Environmental Parameters |
Han Xingbo1, Wu Haitao2, Guo Sihua2, Jiang Xingliang3, Wang Yujie1 |
1. School of Mechanotronics and Vehicle Engineering Chongqing Jiaotong University Chongqing 400074 China; 2. State Grid Chongqing Electric Power Company Chongqing Electric Power Research Institute Chongqing 401123 China; 3. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China |
|
|
Abstract Icing seriously threatens the safe and stable operation of transmission lines. The research on icing prediction and obtaining environment parameters is the basis of anti-icing work of transmission lines. The multi-rotating conductor method is usually used to measure the icing environment parameters, but there is no perfect theoretical basis for the selection of conductor diameter. According to the basic principle of multi-rotating conductor method, an icing model of rotating conductors was established in this paper. The processes of water droplet collision and freezing on rotating conductors were simulated. The icing law of rotating conductors with different diameters and under different environmental conditions was analyzed, and the effects of various environmental parameters on the icing rate of rotating conductors were quantified. A reliable method for selecting the conductor diameter was proposed. Based on the simulation results, the method indicates that the differences of icing rate of conductors with different diameters changes with the change of environmental conditions, the selection of conductor diameter should be set to maximize the difference of icing rate between conductors with different diameters, and make conductor icing rate change sensitively with the change of environment parameters.
|
Received: 15 May 2021
|
|
|
|
|
[1] 刘春城, 刘佼. 输电线路导线覆冰机理及雨凇覆冰模型[J]. 高电压技术, 2011, 37(1): 241-248. Liu Chuncheng, Liu Jiao.Ice accretion mechanism and glaze loads model on wires of power transmission lines[J]. High Voltage Engineering, 2011, 37(1): 241-248. [2] Zhang Jian, Makkonen L, He Qing.A 2D numerical study on the effect of conductor shape on icing collision efficiency[J]. Cold Regions Science and Technology, 2017, 143: 52-58. [3] 蒋兴良, 侯乐东, 韩兴波, 等. 输电线路导线覆冰扭转特性的数值模拟[J]. 电工技术学报, 2020, 35(8): 1818-1826. Jiang Xingliang, Hou Ledong, Han Xingbo, et al.Numerical simulation of torsion characteristics of transmission line conductor[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1818-1826. [4] 舒立春, 刘延庆, 蒋兴良, 等. 盘型悬式绝缘子串自然覆冰直流放电发展路径特点及影响因素分析[J]. 电工技术学报, 2021, 36(8): 1726-1733. Shu Lichun, Liu Yanqing, Jiang Xingliang, et al.Analysis on the DC discharge path of ice-covered disc type suspension insulators under natural conditions[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1726-1733. [5] 蒋兴良, 邹佳玉, 韩兴波, 等. 自然环境绝缘子长串覆冰直流闪络特性[J]. 电工技术学报, 2020, 35(12): 2662-2671. Jiang Xingliang, Zou Jiayu, Han Xingbo, et al.DC flashover characteristics of natural environment insulators covered with ice[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2662-2671. [6] Langmuir I.Atmospheric Phenomena[M]. Amsterdam: Elsevier, 1961. [7] Finstad K J, Lozowski E P, Gates E M.A computational investigation of water droplet trajectories[J]. Journal of Atmospheric and Oceanic Technology, 1988, 5(1): 160-170. [8] Myers T G, Charpin J P F. A mathematical model for atmospheric ice accretion and water flow on a cold surface[J]. International Journal of Heat and Mass Transfer, 2004, 47(25): 5483-5500. [9] Jiang Xingliang, Xiong Ze, Zhang Zhijin, et al.Predictive model for equivalent ice thickness load on overhead transmission lines based on measured insulator string deviations[J]. IEEE Transactions on Power Delivery, 2014, 29(4): 1659-1665. [10] Makkonen L.Models for the growth of rime, glaze, icicles and wet snow on structures[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2000, 358(1776): 2913-2939. [11] Fu Ping, Bouchard G, Farzaneh M.Simulation of ice accumulation on transmission line cables based on time-dependent airflow and water droplet trajectory calculations[C]//23rd International Conference on Offshore Mechanics and Arctic Engineering, Vancouver, British Columbia, Canada, 2004, 3: 971-977. [12] Makkonen L, Zhang Jian, Karlsson T, et al.Modelling the growth of large rime ice accretions[J]. Cold Regions Science and Technology, 2018, 151: 133-137. [13] Fu Ping, Farzaneh M, Bouchard G.Two-dimensional modelling of the ice accretion process on transmission line wires and conductors[J]. Cold Regions Science and Technology, 2006, 46(2): 132-146. [14] 黄亚飞, 蒋兴良, 任晓东, 等. 采用涡流自热环防止输电线路冰雪灾害的方法研究[J]. 电工技术学报, 2021, 36(10): 2169-2177. Huang Yafei, Jiang Xingliang, Ren Xiaodong, et al.Study on preventing icing disasters of transmission lines by use of eddy self-heating ring[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2169-2177. [15] 张志劲, 黄海舟, 蒋兴良, 等. 复合绝缘子雾凇覆冰厚度预测模型[J]. 电工技术学报, 2014, 29(6): 318-325. Zhang Zhijin, Huang Haizhou, Jiang Xingliang, et al.Model for predicting thickness of rime accreted on composite insulators[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 318-325. [16] Fu Ping, Farzaneh M.A CFD approach for modeling the rime-ice accretion process on a horizontal-axis wind turbine[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(4-5): 181-188. [17] Shu Lichun, Liang Jian, Hu Qin, et al.Study on small wind turbine icing and its performance[J]. Cold Regions Science and Technology, 2017, 134: 11-19. [18] 付斌, 孙志国, 朱程香, 等. 机翼表面结冰热力学模型[J]. 工程热物理学报, 2010, 31(10): 1727-1730. Fu Bin, Sun Zhiguo, Zhu Chengxiang, et al.Thermodynamical model of ice accretion on airfoils[J]. Journal of Engineering Thermophysics, 2010, 31(10): 1727-1730. [19] 张强, 曹义华, 钟国. 飞机机翼表面霜冰的三维数值模拟[J]. 航空动力学报, 2010, 25(6): 1303-1309. Zhang Qiang, Cao Yihua, Zhong Guo.Three-dimensional numerical simulation of rime ice accretions on an aircraft wing[J]. Journal of Aerospace Power, 2010, 25(6): 1303-1309. [20] 陈凌. 旋转圆柱体覆冰增长模型与线路覆冰参数预测方法研究[D]. 重庆: 重庆大学, 2011. [21] 蒋兴良, 申强, 舒立春, 等. 利用旋转多圆柱导体覆冰质量预测湿增长过程覆冰参数[J]. 高电压技术, 2009, 35(12): 3071-3076. Jiang Xingliang, Shen Qiang, Shu Lichun, et al.Prediction of wet growth icing parameters by icing quantity of rotating multi-cylindrical conductors[J]. High Voltage Engineering, 2009, 35(12): 3071-3076. [22] 陈凌, 蒋兴良, 胡琴, 等. 自然条件下基于旋转多圆柱体覆冰厚度的绝缘子覆冰质量估算[J]. 高电压技术, 2011, 37(6): 1371-1376. Chen Ling, Jiang Xingliang, Hu Qin, et al.Evaluation of ice mass on insulator under natural icing condition based on the ice thickness accumulated on rotating multi-cylinder[J]. High Voltage Engineering, 2011, 37(6): 1371-1376. [23] 韩兴波, 蒋兴良, 毕聪来, 等. 基于分散型旋转圆导体的覆冰参数预测[J]. 电工技术学报, 2019, 34(5): 1096-1105. Han Xingbo, Jiang Xingliang, Bi Conglai, et al.Prediction of icing environment parameters based on decentralized rotating conductors[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 1096-1105. [24] 毕聪来, 蒋兴良, 韩兴波, 等. 采用扩径导线替代分裂导线的防冰方法[J]. 电工技术学报, 2020, 35(11): 2469-2477. Bi Conglai, Jiang Xingliang, Han Xingbo, et al.Anti-icing method of using expanded diameter conductor to replace bundle conductor[J]. Transactions of China Electrotechnical Society, 2020, 35(11): 2469-2477. |
|
|
|