|
|
Effect of Temperature and Frequency on AC Nonlinear Properties of Epoxy Resin/Silicon Carbide Whisker Composites |
Chen Xiangrong1,2,3, Huang Xiaofan1,2, Wang Qilong1,2, Wang Enzhe1, Zhang Tianyin1 |
1. College of Electrical Engineering Zhejiang University Hangzhou 310027 China; 2. Hangzhou Global Scientific and Technological Innovation Center Zhejiang University Hangzhou 311200 China; 3. Advanced Electrical International Research Center Zhejiang University Haining 314400 China |
|
|
Abstract To investigate the AC conductive and dielectric properties at different temperatures and frequencies, the pure epoxy and epoxy resin/silicon carbide whisker (EP/SiCw) composites with different doping mass fractions were fabricated. The surface modification effect of the SiCw fillers, the cross-section micro-morphology of the samples, the phase structure information of the SiCw fillers and samples, the thermomechanical properties and glass transition temperature of the samples were investigated by transmission electron microscope, field emission scanning electron microscope, X-ray diffraction, dynamic mechanical analysis and differential scanning calorimetry, respectively. The effects of temperature and frequency on AC conductivity and dielectric properties of the samples were analyzed by the AC bias voltage module of the dielectric spectrum analyzer. The results show that for the same frequency and doping concentration, the nonlinear AC conductivity coefficient decreases with the increase of temperature, whereas the nonlinear dielectric constant coefficient, nonlinear AC conductivity switching field strength and nonlinear dielectric constant switching field strength increase with the increase of temperature. For the same temperature and doping concentration, the nonlinear AC conductivity coefficient and nonlinear dielectric constant coefficient both decrease with the increase of frequency, whereas the nonlinear AC conductivity switching field strength and nonlinear dielectric constant coefficient both increase with the increase of the frequency. The generation mechanisms of the nonlinear conductive property and nonlinear dielectric property at different temperatures and frequencies are explained by the double Schottky barrier model and the interface charge relaxation model, respectively. The results can provide experimental and theoretic reference to the high-temperature and high-frequency application of the EP/SiCw composites.
|
Received: 02 March 2022
|
|
|
|
|
[1] 盛况, 郭清, 张军明, 等. 碳化硅电力电子器件在电力系统的应用展望[J]. 中国电机工程学报, 2012, 32(30): 1-7, 3. Sheng Kuang, Guo Qing, Zhang Junming, et al.Development and prospect of SiC power devices in power grid[J]. Proceedings of the CSEE, 2012, 32(30): 1-7, 3. [2] 钱照明, 张军明, 盛况. 电力电子器件及其应用的现状和发展[J]. 中国电机工程学报, 2014, 34(29): 5149-5161. Qian Zhaoming, Zhang Junming, Sheng Kuang.Status and development of power semiconductor devices and its applications[J]. Proceedings of the CSEE, 2014, 34(29): 5149-5161. [3] Dai Chao, Chen Xiangrong, Wang Qilong, et al.Electrical and thermal performances of epoxy-based micro-nano hybrid composites at different electric fields and temperatures[J]. Nanotechnology, 2021, 32(31): 315715 [4] Ghassemi M.PD measurements, failure analysis, and control in high-power IGBT modules[J]. High Voltage, 2018, 3(3): 170-178. [5] Tousi M M, Ghassemi M.Combined geometrical techniques and applying nonlinear field dependent conductivity layers to address the high electric field stress issue in high voltage high-density wide bandgap power modules[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(1): 305-313. [6] Abd-Rahman R, Haddad A, Harid N, et al.Stress control on polymeric outdoor insulators using Zinc oxide microvaristor composites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(2): 705-713. [7] 李俊杰, 梅云辉, 梁玉, 等. 功率器件高电压封装用复合电介质灌封材料研究[J]. 电工技术学报, 2022, 37(3): 786-792. Li Junjie, Mei Yunhui, Liang Yu, et al.Study on composite dielectric encapsulation materials for high voltage power device packaging[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 786-792. [8] 胡琦, 李庆民, 刘智鹏, 等. 基于表层梯度电导调控的直流三支柱绝缘子界面电场优化方法[J]. 电工技术学报, 2022, 37(7): 1856-1865. Hu Qi, Li Qingmin, Liu Zhipeng, et al.Interfacial electric field optimization of DC tri-post insulator based on gradient surface conductance regulation[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1856-1865. [9] Pan Wenke, Wang Ya, Ding Hao, et al.Nonlinear materials applied in HVDC gas insulated equipment: from fundamentals to applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(5): 1588-1603. [10] Mitic G, Licht T, Lefranc G.IGBT module technology with high partial discharge resistance[C]//Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248), Chicago, IL, USA, 2001: 1899-1904. [11] Donzel L, Schuderer J.Nonlinear resistive electric field control for power electronic modules[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(3): 955-959. [12] 李禾, 王闯, 刘丽岚, 等. 低填料比石墨烯/环氧树脂复合材料非线性电导机理的实验研究[J]. 高电压技术, 2018, 44(3): 812-820. Li He, Wang Chuang, Liu Lilan, et al.Experimental study on nonlinear conduction mechanism of epoxy-based nanocomposite with low content of graphene filler[J]. High Voltage Engineering, 2018, 44(3): 812-820. [13] 刘晨阳, 郑晓泉, 彭平. 无机微米填料改性聚酰亚胺复合材料非线性电导特性[J]. 高电压技术, 2015, 41(12): 4137-4143. Liu Chenyang, Zheng Xiaoquan, Peng Ping.Nonlinear conductivity characteristics of modified polyimide composite materials with inorganic filler[J]. High Voltage Engineering, 2015, 41(12): 4137-4143. [14] 韩永森, 孙健, 张昕, 等. 微纳米SiC/环氧树脂复合材料的界面和非线性电导特性[J]. 复合材料学报, 2020, 37(7): 1562-1570. Han Yongsen, Sun Jian, Zhang Xin, et al.Interface and nonlinear conduction characteristics of micro-nano SiC/epoxy composites[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1562-1570. [15] 迟庆国, 崔爽, 张天栋, 等. 碳化硅晶须/环氧树脂复合介质非线性电导特性研究[J]. 电工技术学报, 2020, 35(20): 4405-4414. Chi Qingguo, Cui Shuang, Zhang Tiandong, et al.Study on nonlinear characteristics on conductivity of silicon carbide whisker/epoxy resin composites[J]. Transactions of China Electrotechnical Society, 2020, 35(20): 4405-4414. [16] Li Z L, Du B X, Yang Z R, et al.Effects of crystal morphology on space charge transportation and dissipation of SiC/silicone rubber composites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(4): 2616-2625. [17] Chen Xiangrong, Wang Qilong, Ren Na, et al.Potential of epoxy nanocomposites for packaging materials of high voltage power modules: a validation using experiments and simulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(6): 2161-2169. [18] Blatt S, Hinrichsen V.Mathematical model for numerical simulation of current density in microvaristor filled insulation materials[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(2): 1161-1170. [19] Gao Lei, Yang Xiao, Hu Jun, et al.ZnO microvaristors doped polymer composites with electrical field dependent nonlinear conductive and dielectric characteristics[J]. Materials Letters, 2016, 171: 1-4. [20] Yang Xiao, Zhao Xiaolei, Li Qi, et al.Nonlinear effective permittivity of field grading composite dielectrics[J]. Journal of Physics D: Applied Physics, 2018, 51(7): 075304. [21] Zhang Yuefei, Han Xiaodong, Zheng Kun, et al.Direct observation of super-plasticity of beta-SiC nanowires at low temperature[J]. Advanced Functional Materials, 2007, 17(17): 3435-3440. [22] Wåhlander M, Nilsson F, Andersson R L, et al.Reduced and surface-modified graphene oxide with nonlinear resistivity[J]. Macromolecular Rapid Communications, 2017, 38(16): 1700291. [23] Yang Xiao, He Jinliang, Hu Jun.Tailoring the nonlinear conducting behavior of silicone composites by ZnO microvaristor fillers[J]. Journal of Applied Polymer Science, 2015, 132(40): 42645. [24] Feng Yefeng, Wu Yuhao, Xie Yunchuan, et al.Tunable permittivity in polymer composites filled with Si-based semiconductors by regulating induced polarization[J]. Materials Science in Semiconductor Processing, 2017, 61: 63-70. [25] Diaham S, Locatelli M L.Dielectric properties of polyamide-imide[J]. Journal of Physics D: Applied Physics, 2013, 46(18): 185302. [26] Wang Qilong, Chen Xiangrong, Huang Xiaofan, et al.Tailoring electric field distortion in high-voltage power modules utilizing epoxy resin/silicon carbide whisker composites with field-dependent conductivity[J]. ACS Applied Electronic Materials, 2022, 4(1): 478-493. [27] Blatter G, Greuter F.Carrier transport through grain boundaries in semiconductors[J]. Physical Review B, Condensed Matter, 1986, 33(6): 3952-3966. [28] Donzel L, Greuter F, Christen T.Nonlinear resistive electric field grading Part 2: materials and applications[J]. IEEE Electrical Insulation Magazine, 2011, 27(2): 18-29. [29] Du B X, Yang Z R, Li Z L, et al.Temperature-dependent nonlinear conductivity and carrier mobility of silicone rubber/SiC composites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(3): 1080-1087. [30] Strümpler R, Glatz-Reichenbach J.FEATURE ARTICLE conducting polymer composites[J]. Journal of Electroceramics, 1999, 3(4): 329-346. [31] Holm R.Electric contacts: theory and application[M]. 4th ed. Berlin/Heidelberg: Springer, 1967. [32] Lewis T J.Nanometric dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(5): 812-825. |
|
|
|