|
|
Research Progress on Numerical Simulation of Gas Breakdown at Microscale |
Meng Guodong, She Junyi, Ying Qi, Gao Xinyu, Cheng Yonghong |
State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an 710049 China |
|
|
Abstract As the design and application of power equipment, electronic devices and new concept weapons are developing towards miniaturization and integration, the insulation issue of microstructures under extreme high electric field has become increasingly prominent. Therefore, in the past two decades, a lot of theoretical, experimental and numerical simulation research has been carried out on the electrical breakdown mechanism and insulation properties at the micro-nano scale range all around the world, and important progress have been obtained. Unlike the numerical simulation at macroscale, while the breakdown gap lies in micrometers, which is comparable to the mean free path of electrons, the contribution of field electron emission needs to be emphasized. Meanwhile, the meshing of the computing domains will be much finer, resulting in a huge computational cost. In this work, the research progress on the theoretical study and numerical simulations of micro-scale gas breakdown in recent years was reviewed. The numerical simulation method, physical model establishment, breakdown process analysis and influence mechanism at micron gaps were emphasized and summarized. Then the current problems and challenges were proposed, and perspectives in the future was also put forward. This review should be of great significance to further understand and develop the breakdown theory at microscale.
|
Received: 13 May 2021
|
|
|
|
|
[1] 高克利, 颜湘莲, 刘焱, 等. 环保气体绝缘管道技术研究进展[J]. 电工技术学报, 2020, 35(1): 3-20. Gao Keli, Yan Xianglian, Liu Yan, et al.Progress of technology for environment-friendly gas insulated transmission line[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 3-20. [2] 臧奕茗, 钱勇, 刘伟, 等. C4F7N/CO2混合气体中尖端缺陷的流注放电仿真研究[J]. 电工技术学报, 2020, 35(1): 34-42. Zang Yiming, Qian Yong, Liu Wei, et al.Simulation study on streamer of tip defects in C4F7N/CO2 mixed gas[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 34-42. [3] 陈琪, 张晓星, 李祎, 等. 环保绝缘介质C4F7N/CO2/O2混合气体的放电分解特性[J]. 电工技术学报, 2020, 35(1): 80-87. Chen Qi, Zhang Xiaoxing, Li Yi, et al.The discharge decomposition characteristics of Environmental Friendly insulating medium C4F7N/CO2/O2 gas mixture[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 80-87. [4] Lyshevski S E.MEMS and NEMS - systems, devices, and structures[J]. IEEE Electrical Insulation Magazine, 2004, 20(4): 46. [5] 刘靖, 石庚辰. 微机电系统(MEMS)技术及在引信中的应用[J]. 现代引信, 1997, 19(3): 20-26. Liu Jing, Shi Gengchen.Micro electromechanical system (MEMS) technology and its application in fuzes[J]. Journal od Detction & Control, 1997, 19(3): 20-26. [6] 周兆英, 杨兴. 微/纳机电系统[J]. 仪表技术与传感器, 2003(2): 1-5. Zhou Zhaoying, Yang Xing.Micro and nano electro-mechanic systems[J]. Instrument Technique and Sensor, 2003(2): 1-5. [7] Ionescu-Zanetti C, Nevill J T, Di Carlo D, et al.Nanogap capacitors: sensitivity to sample permittivity changes[J]. Journal of Applied Physics, 2006, 99(2): 024305. [8] 王科镜, 李南, 陈先龙, 等. 电容式射频微机电系统开关的纳秒脉冲击穿及损伤特性[J]. 现代应用物理, 2019, 10(1): 32-37. Wang Kejing, Li Nan, Chen Xianlong, et al.Breakdown and damage characteristics of typical RF MEMS switch structure under nanosecond pulse[J]. Modern Applied Physics, 2019, 10(1): 32-37. [9] 欧阳吉庭, 张宇, 秦宇. 微放电及其应用[J]. 高电压技术, 2016, 42(3): 673-684. Ouyang Jiting, Zhang Yu, Qin Yu.Micro-discharge and its applications[J]. High Voltage Engineering, 2016, 42(3): 673-684. [10] Paschen F. On sparking over in air, hydrogen, carbon dioxide under the potentials corresponding to various pressures[J]. Wiedemann Annalen der Physik und Chemie, 1889, 37: 69-96. [11] Townsend J, Tizard H.The motion of electrons in gases[J]. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 1913, 88(604): 336-347. [12] Germer L H, Haworth F E.A low voltage discharge between very close electrodes[J]. Physical Review, 1948, 73(9): 1121. [13] Boyle W S, Kisliuk P.Departure from paschen's law of breakdown in gases[J]. Physical Review, 1955, 97(2): 255-259. [14] Germer L H.Electrical breakdown between close electrodes in air[J]. Journal of Applied Physics, 1959, 30(1): 46-51. [15] 成永红, 孟国栋, 董承业. 微纳尺度电气击穿特性和放电规律研究综述[J]. 电工技术学报, 2017, 32(2): 13-23. Cheng Yonghong, Meng Guodong, Dong Chengye.Review on the breakdown characteristics and discharge behaviors at the micro & nano scale[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 13-23. [16] Torres J M, Dhariwal R S.Electric field breakdown at micrometre separations in air and vacuum[J]. Microsystem Technologies, 1999, 6(1): 6-10. [17] Torres J M, Dhariwal R S.Electric field breakdown at micrometre separations[J]. Nanotechnology, 1999, 10(1): 102-107. [18] Dhariwal R S, Torres J M, Desmulliez M P Y. Electric field breakdown at micrometre separations in air and nitrogen at atmospheric pressure[J]. IEE Proceedings -Science, Measurement and Technology, 2000, 147(5): 261-265. [19] Slade P G, Taylor E D.Electrical breakdown in atmospheric air between closely spaced (0.2μm-40μm) electrical contacts[J]. IEEE Transactions on Components & Packaging Technologies, 2002, 25(3): 390-396. [20] Ma Xianyun, Kim J D, Sudarshan T S.High field breakdown characteristics of micrometric gaps in vacuum[C]//10th International Conference on Vacuum Microelectronics, Kyongju, Korea (South), 1997: 725-729. [21] Peschot A, Bonifaci N, Lesaint O, et al.Deviations from the Paschen's law at short gap distances from 100 nm to 10 μm in air and nitrogen[J]. Applied Physics Letters, 2014, 105(12): 123109. [22] Wang Ronggang, Ji Qizheng, Zhang Tongkai, et al.Discharge characteristics of a needle-to-plate electrode at a micro-scale gap[J]. Plasma Science and Technology, 2018, 20(5): 054017. [23] 孙志, 付琳清, 高鑫, 等. 基于原子力显微镜的微间隙空气放电研究[J]. 电工技术学报, 2018, 33(23): 5616-5624. Sun Zhi, Fu Linqing, Gao Xin, et al.Research of discharge in micro-gap based on atomic force microscope[J]. Transactions of China Electrotechnical Society, 2018, 33(23): 5616-5624. [24] Wallash A J, Levit L.Electrical breakdown and ESD phenomena for devices with nanometer-to-micron gaps[C]//Conference on Reliability, Testing, and Characterization of MEMS/MOEMS II, San Jose, California, USA, 2003, 4980: 87-96. [25] Strong F W, Skinner J L, Tien N C.Electrical discharge across micrometer-scale gaps for planar MEMS structures in air at atmospheric pressure[J]. Journal of Micromechanics and Microengineering, 2008, 18(7): 075025. [26] 郭昱均, 季启政, 何锋, 等. 平板型电极微腔放电的特性[J]. 高电压技术, 2019, 45(3): 820-825. Guo Yujun, Ji Qizheng, He Feng, et al.Discharge characteristic in micro-channel of plate electrodes[J]. High Voltage Engineering, 2019, 45(3): 820-825. [27] Meng Guodong, Cheng Yonghong, Dong Chengye, et al.Experimental study on electrical breakdown for devices with micrometer gaps[J]. Plasma Science and Technology, 2014, 16(12): 1083-1089. [28] Meng Guodong, Gao Xinyu, Loveless A M, et al.Demonstration of field emission driven microscale gas breakdown for pulsed voltages using in situ optical imaging[J]. Physics of Plasmas, 2018, 25(8): 082116. [29] Meng Guodong, Ying Qi, Loveless A M, et al.Spatio-temporal dynamics of pulsed gas breakdown in microgaps[J]. Physics of Plasmas, 2019, 26(1): 014506. [30] Loveless A M, Meng Guodong, Ying Qi, et al.The transition to paschen's law for microscale gas breakdown at subatmospheric pressure[J]. Scientific Reports, 2019, 9(1): 5669. [31] Radmilović-Radjenović M, Radjenović B.An analytical relation describing the dramatic reduction of the breakdown voltage for the microgap devices[J]. EPL (Europhysics Letters), 2008, 83(2): 25001. [32] Matejčik Š, Radjenović B, Klas M, et al.Field emission driven direct current argon discharges and electrical breakdown mechanism across micron scale gaps[J]. The European Physical Journal D, 2015, 69(11): 251. [33] Tirumala R, Go D B.An analytical formulation for the modified Paschen's curve[J]. Applied Physics Letters, 2010, 97(15): 151502. [34] Loveless A M, Garner A L.Scaling laws for gas breakdown for nanoscale to microscale gaps at atmospheric pressure[J]. Applied Physics Letters, 2016, 108(23): 234103. [35] Loveless A M, Garner A L.A universal theory for gas breakdown from microscale to the classical Paschen law[J]. Physics of Plasmas, 2017, 24(11): 113522. [36] 王新新, 杨硕, 付洋洋, 等. 电场分布对帕申曲线的影响[J]. 高电压技术, 2016, 42(12): 3728-3733. Wang Xinxin, Yang Shuo, Fu Yangyang, et al.Effect of electric field on paschen's curves[J]. High Voltage Engineering, 2016, 42(12): 3728-3733. [37] 王新新, 付洋洋. 气体放电的相似性[J]. 高电压技术, 2014, 40(10): 2966-2972. Wang Xinxin, Fu Yangyang.Similarity in gas discharges[J]. High Voltage Engineering, 2014, 40(10): 2966-2972. [38] Verboncoeur J P, Alves M V, Vahedi V, et al.Simultaneous potential and circuit solution for 1D bounded plasma particle simulation codes[J]. Journal of Computational Physics, 1993, 104(2): 321-328. [39] Verboncoeur J P, Langdon A B, Gladd N T.An object-oriented electromagnetic PIC code[J]. Computer Physics Communications, 1995, 87(1/2): 199-211. [40] Radmilović-Radjenović M, Radjenović B.A particle-in-cell simulation of the breakdown mechanism in microdischarges with an improved secondary emission model[J]. Contributions to Plasma Physics, 2007, 47(3): 165-172. [41] Go D B, Venkattraman A.Microscale gas breakdown: ion-enhanced field emission and the modified Paschen's curve[J]. Journal of Physics D: Applied Physics, 2014, 47(50): 503001. [42] Semnani A, Venkattraman A, Alexeenko A A, et al.Pre-breakdown evaluation of gas discharge mechanisms in microgaps[J]. Applied Physics Letters, 2013, 102(17): 174102. [43] Fu Yangyang, Krek J, Zhang Peng, et al.Evaluating microgap breakdown mode transition with electric field non-uniformity[J]. Plasma Sources Science and Technology, 2018, 27(9): 095014. [44] Fu Yangyang, Yang Shuo, Zou Xiaobing, et al.Effect of distribution of electric field on low-pressure gas breakdown[J]. Physics of Plasmas, 2017, 24(2): 023508. [45] 徐翱, 金大志, 王亚军, 等. 场致发射影响微间隙气体放电形成的模拟[J]. 高电压技术, 2020, 46(2): 715-722. Xu Ao, Jin Dazhi, Wang Yajun, et al.Simulation on influence of field emission to the gas discharge in micro-scale gaps[J]. High Voltage Engineering, 2020, 46(2): 715-722. [46] Meng Guodong, Ying Qi, Wang Kejing, et al.The influence of the cathode radius on the microgap breakdown in air based on PIC/MCC simulation[C]// 2019 IEEE Conference on Electrical Insulation and Dielectric Phenomena, Richland, WA, USA, 2019: 769-772. [47] Lee R T, Chiou Y C, Chung H H.Arc erosion behaviour of silver electric contacts in a single arc discharge across a static gap[J]. IEE Proceedings-Science, Measurement and Technology, 2001, 148(1): 8-14. [48] Venkattraman A, Alexeenko A A.Scaling law for direct current field emission-driven microscale gas breakdown[J]. Physics of Plasmas, 2012, 19(12): 123515. [49] Fowler R H, Nordheim L.Electron emission in intense electric fields[J]. Proceedings of The Royal Society a Mathematical Physical and Engineering Science, 1928, 119(781): 173-81. [50] Radmilović-Radjenović M, Radjenović B.Theoretical study of the electron field emission phenomena in the generation of a micrometer scale discharge[J]. Plasma Sources Science and Technology, 2008, 17(2): 024005. [51] Go D B, Pohlman D A.A mathematical model of the modified Paschen's curve for breakdown in microscale gaps[J]. Journal of Applied Physics, 2010, 107(10): 103303. [52] Li Yingjie, Tirumala R, Rumbach P, et al.The coupling of ion-enhanced field emission and the discharge during microscale breakdown at moderately high pressures[J]. IEEE Transactions on Plasma Science, 2013, 41(1): 24-35. [53] Rumbach P, Go D B.Fundamental properties of field emission-driven direct current microdischarges[J]. Journal of Applied Physics, 2012, 112(10): 103302. [54] Loveless A M, Garner A L.Generalization of microdischarge scaling laws for all gases at atmospheric pressure[J]. IEEE Transactions on Plasma Science, 2017, 45(4): 574-583. [55] Radmilović-Radjenović M, Lj Petrović Z, Radjenović B.Modelling of breakdown behavior by PIC/MCC code with improved secondary emission models[J]. Journal of Physics: Conference Series, 2007, 71: 012007. [56] Birdsall C K.Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC[J]. IEEE Transactions on Plasma Science, 1991, 19(2): 65-85. [57] Choi J, Iza F, Lee J K, et al.Electron and ion kinetics in a DC microplasma at atmospheric pressure[J]. IEEE Transactions on Plasma Science, 2007, 35(5): 1274-1278. [58] Turner M M.Kinetic properties of particle-in-cell simulations compromised by Monte Carlo collisions[J]. Physics of Plasmas, 2006, 13(3): 033506. [59] Semnani A, Venkattraman A, Alexeenko A A, et al.Frequency response of atmospheric pressure gas breakdown in micro/nanogaps[J]. Applied Physics Letters, 2013, 103(6): 063102. [60] Kisliuk P.Electron emission at high fields due to positive ions[J]. Journal of Applied Physics, 1959, 30(1): 51-55. [61] Tholeti S S, Semnani A, Peroulis D, et al.Dark-to-arc transition in field emission dominated atmospheric microdischarges[J]. Physics of Plasmas, 2015, 22(8): 083508. [62] Radmilović-Radjenović M, Lee J K, Iza F, et al.Particle-in-cell simulation of gas breakdown in microgaps[J]. Journal of Physics D: Applied Physics, 2005, 38(6): 950-954. [63] Venkattraman A.Cathode fall model and current-voltage characteristics of field emission driven direct current microplasmas[J]. Physics of Plasmas, 2013, 20(11): 113505. [64] Wang Weiwei, Zhang Gengmin, Yu Ligang, et al.Field emission properties of zinc oxide nanowires fabricated by thermal evaporation[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 36(1): 86-91. [65] Radmilovic-Radjenovic M, Radjenovic B.A particle-in-cell simulation of the high-field effect in devices with micrometer gaps[J]. IEEE Transactions on Plasma Science, 2007, 35(5): 1223-1228. [66] Klas M, Matejčik Š, Radjenović B, et al.The breakdown voltage characteristics and the secondary electron production in direct current hydrogen discharges for the gaps ranging from 1μm to 100μm[J]. Physics Letters A, 2012, 376(10/11): 1048-1052. [67] Radmilović-Radjenović M, Radjenović B.The influence of ion-enhanced field emission on the high-frequency breakdown in microgaps[J]. Plasma Sources Science and Technology, 2007, 16(2): 337-340. [68] Radmilović-Radjenović M, Matejčik, Klas M, et al.The role of the field emission effect in direct-current argon discharges for the gaps ranging from 1 to 100µm[J]. Journal of Physics D: Applied Physics, 2013, 46(1): 015302. [69] Vahedi V, Lieberman M A, Alves M V, et al.A one-dimensional collisional model for plasma-immersion ion implantation[J]. Journal of Applied Physics, 1991, 69(4): 2008-2014. [70] Levko D.Electron kinetics in a microdischarge in nitrogen at atmospheric pressure[J]. Journal of Applied Physics, 2013, 114(22): 223302. [71] Moore C H, Hopkins M M, Crozier P S, et al.1D PIC-DSMC simulations of breakdown in microscale gaps[J]. AIP Conference Proceedings, 2012, 1501(1): 629-636. [72] Xu Ao, Jin Dazhi, Chen Lei, et al.2D PIC-DSMC simulation of gas breakdown in micrometer scale gaps[C]//2016 27th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV), Suzhou, China, 2016: 1-4. [73] 应琪. 不同阴极条件下微米尺度气隙击穿特性研究[D]. 西安: 西安交通大学, 2021. [74] Zhang W, Fisher T S, Garimella S V.Simulation of ion generation and breakdown in atmospheric air[J]. Journal of Applied Physics, 2004, 96(11): 6066-6072. [75] Garg A, Ayyaswamy V, Kovacs A, et al.Direct measurement of field emission current in E-static MEMS structures[C]//2011 IEEE 24th International Conference on Micro Electro Mechanical Systems. Cancun, Mexico, 2011: 412-415. [76] Venkattraman A, Garg A, Peroulis D, et al.Direct measurements and numerical simulations of gas charging in microelectromechanical system capacitive switches[J]. Applied Physics Letters, 2012, 100(8): 083503. [77] Gao Xinyu, Meng Guodong, Wang Kejing, et al.Numerical simulation of gas breakdown in microgaps based on PIC/MCC method[C]//2018 IEEE 2nd International Conference on Dielectrics. Budapest, Hungary, 2018: 1-4. [78] Zhang Tongkai, He Feng, Li Ben, et al.Transition of predominant mechanism for the deviation of micro-gap DC gas breakdown character with electrode gap changing[J]. AIP Advances, 2019, 9(2): 025006. [79] Radmilović-Radjenović M, Radjenović B, Nikitović Ž, et al.The humidity effect on the breakdown voltage characteristics and the transport parameters of air[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2012, 279: 103-105. [80] Ito T, Izaki T, Terashima K.Application of microscale plasma to material processing[J]. Thin Solid Films, 2001, 386(2): 300-304. [81] Radmilovic-Radjenovic M, Radjenovic B.Theoretical study of the breakdown mechanism in benzol microdsicharges[J]. Journal of Naval University of Engineering, 2008(84): 383-386. [82] Meng Lingguo, Xing Jianping, Lv Yuanjie, et al.Simulations of breakdown voltage of coplanar electrodes microplasma devices[J]. IEEE Transactions on Plasma Science, 2013, 41(1): 12-16. [83] Semnani A, Peroulis D.Contribution of ions in radio frequency properties of atmospheric pressure microgaps[J]. Applied Physics Letters, 2014, 105(25): 253105. [84] Levko D, Raja L L.Breakdown of atmospheric pressure microgaps at high excitation frequencies[J]. Journal of Applied Physics, 2015, 117(17): 173303. [85] Campbell J D, Bowman A, Lenters G T, et al.Collision and diffusion in microwave breakdown of nitrogen gas in and around microgaps[J]. AIP Advances, 2014, 4(1): 017119. [86] Xue Jun, Hopwood J A.Microwave-frequency effects on microplasma[J]. IEEE Transactions on Plasma Science, 2009, 37(6): 816-822. [87] Schnyder R, Howling A A, Bommottet D, et al.Direct Current breakdown in gases for complex geometries from high vacuum to atmospheric pressure[J]. Journal of Physics D: Applied Physics, 2013, 46(28): 285205. [88] Fu Yangyang, Zhang Peng, Verboncoeur J P.Gas breakdown in atmospheric pressure microgaps with a surface protrusion on the cathode[J]. Applied Physics Letters, 2018, 112(25): 254102. [89] Fu Yangyang, Zhang Peng, Krek J, et al.Gas breakdown and its scaling law in microgaps with multiple concentric cathode protrusions[J]. Applied Physics Letters, 2019, 114(1): 014102. [90] Fu Yangyang, Krek J, Zhang Peng, et al.Gas breakdown in microgaps with a surface protrusion on the electrode[J]. IEEE Transactions on Plasma Science, 2019, 47(5): 2011-2019. [91] Fu Yangyang, Zhang Peng, Verboncoeur J P, et al.Effect of surface protrusion on plasma sheath properties in atmospheric microdischarges[J]. Physics of Plasmas, 2018, 25(1): 013530. [92] Fu Yangyang, Zhang Peng, Verboncoeur J P.Paschen's curve in microgaps with an electrode surface protrusion[J]. Applied Physics Letters, 2018, 113(5): 054102. [93] Fu Yangyang, Zhang Peng, Verboncoeur J P, et al.Electrical breakdown from macro to micro/nano scales: a tutorial and a review of the state of the art[J]. Plasma Research Express, 2020, 2(1): 013001. [94] Kyritsakis A, Baibuz E, Jansson V, et al.Atomistic behavior of metal surfaces under high electric fields[J]. Physical Review B, 2019, 99(20): 205418. [95] Veske M, Kyritsakis A, Djurabekova F, et al. Dynamic coupling between particle-in-cell and atomistic simulations[J]. Physical Review E, 2020, 101(): 053307. [96] Gao Xinyu, Kyritsakis A, Veske M, et al.Molecular dynamics simulations of thermal evaporation and critical electric field of copper nanotips[J]. Journal of Physics D: Applied Physics, 2020, 53(36): 365202. |
|
|
|