|
|
Research Advances of the Detection Technology for Kinetic Behavior and Weak Discharge of the Micro-Nano Dust |
Xue Naifan1, Li Qingmin1, Liu Zhipeng2, Chang Yanan1, Liang Ruixue2 |
1. State Key Lab of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 2. Beijing Key Lab of HV and EMC North China Electric Power University Beijing 102206 China |
|
|
Abstract In the process of production, installation and operation of gas insulated switchgear/gas insulated transmission lines(GIS/GIL)equipment, it is inevitable to produce micron-nano scale dust. This kind of micro-scale dust is not easy to be detected, and the physical mechanism of its charge movement is not clear, leading to strong security risks. In this paper, the research progress at home and abroad was reviewed, including the charge movement behavior and characterization of dust, dust concentration detection, dust visualization detection technology and the dust induced weak discharge mechanism. On this basis, two key problems and technical difficulties in the study of micro-nano dust were further sorted out. For the study of random charge mechanism and spatial-temporal dynamic behavior characteristics of micro-nano dust, it is necessary to break through the rapid identification method of micro-nano dust and the effective detection technology of spatial concentration based on measurement. Among them, the visual detection technology of micro-nano dust motion behavior is the development direction. Aiming at the physical mechanism of weak discharge induced by charged micro-nano dust, it is necessary to develop a high sensitivity detection method based on femtosecond laser and terahertz wave technology by using the characteristics of discharge spectroscopy. The effective solution of the above problems can provide basic support for the treatment of insulation defects and discharge phenomena caused by micro-nano dust in GIS/GIL.
|
Received: 14 June 2021
|
|
Fund:国家自然科学基金(51737005,51929701和52081330507)和北京市自然科学基金(3202031)资助项目 |
|
|
|
[1] 张博雅, 张贵新. 直流GIL中固-气界面电荷特性研究综述Ⅰ: 测量技术及积聚机理[J]. 电工技术学报, 2018, 33(20): 4649-4662. Zhang Boya, Zhang Guixin.Review of charge accumulation characteristics at gas-solid interface in DC GIL, part I: measurement and mechanisms[J]. Transactions of China Electrotechnical Society,2018, 33(20): 4649-4662. [2] 丁咪, 邹亮, 张黎, 等. 功能化掺杂对交联环氧树脂/碳纳米管复合材料热力学性能影响的分子动力学模拟[J]. 电工技术学报, 2021, 36(23): 5046-5057. Ding Mi, Zou Liang, Zhang Li, et al.Molecular dynamics simulation of the influence of functionalized doping on thermodynamic properties of cross-linked epoxy/carbon nanotube composites[J]. Transactions of China Electrotechnical Society, 2021, 36(23): 5046-5057. [3] 韩智云, 邹亮, 辛喆, 等. 直流GIL绝缘子环氧树脂/碳纳米管复合涂层关键物理性能的分子动力学模拟[J]. 电工技术学报, 2018, 33(20): 4692-4703, 4721. Han Zhiyun, Zou Liang, Xin Zhe, et al.Molecular dynamics simulation of vital physical properties of epoxy/carbon nanotube composite coatings on DC GIL insulators[J]. Transactions of China Electrotechnical Society,2018, 33(20): 4692-4703, 4721. [4] 张博雅, 张贵新. 直流GIL中固-气界面电荷特性研究综述Ⅱ:电荷调控及抑制策略[J]. 电工技术学报, 2018, 33(22): 5145-5158. Zhang Boya, Zhang Guixin.Review of charge accumulation characteristics at gas-solid interface in DC GIL, part Ⅱ: charge control and suppression strategy[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5145-5158. [5] 陈士刚, 关永刚, 张小青, 等. 不完备故障类别下基于Multi-SVDD的高压隔离开关故障诊断方法[J]. 电工技术学报, 2018, 33(11): 2439-2447. Chen Shigang, Guan Yonggang, Zhang Xiaoqing, et al.Diagnosis method of high voltage isolating switch fault based on multi-SVDD under incomplete fault type[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2439-2447. [6] 汪沨, 梁芳蔚, 钟理鹏, 等. 基于X射线短时照射的高压直流GIS/GIL绝缘子表面电荷主动消散方法[J]. 电工技术学报, 2020, 35(14): 3147-3151. Wang Feng, Liang Fangwei, Zhong Lipeng, et al.Active charge dissipation method for surface charge on the surface of DC GIS/GIL insulator based on short-time X-Ray irradiation[J]. Transactions of China Electrotechnical Society, 2020, 35(14): 3147-3151. [7] 吕鸿. 2013年南方电网和广东电网高压开关运行情况及典型故障分析[EB/OL]. 2014. https://wenku. baidu.com/view/d7a8b3450722192e4436f627.html. [8] 广东电网公司电力科学研究院. GIS设备典型缺陷及故障分析专题汇报[EB/OL].2011. https://www. doc88.com/p-047673875110.html. [9] Molchanov O, Krpec K, Horák J, et al.Comparison of methods for evaluating particle charges in the elec-trostatic precipitation of fly-ash from small-scale solid-fuel combustion[J]. Separation and Purification Technology, 2020, 248: 117057. [10] Vaddi R S, Guan Yifei, Novosselov I.Behavior of ultrafine particles in electro-hydrodynamic flow inducedby corona discharge[J]. Journal of Aerosol Science, 2020, 148: 105587. [11] 李国辉. 静电除尘用直流叠加脉冲电源相关技术研究[D]. 哈尔滨: 哈尔滨理工大学, 2019. [12] Chen Longwen, Gonze E, Ondarts M, et al.Electro-static precipitator for fine and ultrafine particle removal from indoor air environments[J]. Separation and Purification Technology, 2020, 247: 116964. [13] 王云萍. 微尺度颗粒与平板碰撞的模拟研究[D]. 大连: 大连理工大学, 2019. [14] 刘文巍. 范德华力作用下细颗粒随机堆积过程的动力学研究[D]. 北京: 清华大学, 2017. [15] 柳冠青. 范德华力和静电力下的细颗粒离散动力学[D]. 北京: 清华大学, 2011. [16] 梁瑞雪, 刘衡, 胡琦, 等. GIS/GIL内微米级金属粉尘动力学行为与诱发放电特性研究进展[J]. 中国电机工程学报, 2020, 40(22): 7153-7166. Liang Ruixue, Liu Heng, Hu Qi, et al.Research advances in the kinetic behavior and induced discharge characteristics of micron metal dust within GIS/GIL[J]. Proceedings of the CSEE, 2020, 40(22): 7153-7166. [17] 程涵, 魏威, Bilal Lqbal Ayubi, 等. 直流GIL中线形金属微粒电动力学行为研究[J]. 电工技术学报, 2021, 36(24): 5283-5293. Cheng Han, Wei Wei, Ayubi B L, et al.Study on the electrodynamic behavior of linear metal particles in DC GIL[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5283-5293. [18] 李杰, 李晓昂, 吕玉芳, 等. 工频电压下片状自由金属微粒带电特性与运动规律研究[J]. 中国电机工程学报, 2021, 41(3): 1166-1176. Li Jie, Li Xiaoang, Lü Yufang, et al.Study on the charge characteristics and movement pattern of lamellar particles under power frequency voltage[J]. Proceedings of the CSEE, 2021, 41(3): 1166-1176. [19] Kuwahara H, Inamura S, Watanabe T, et al.Effect of solid impurities on breakdown in compressed SF6 gas[J]. IEEE Transactions on Power Apparatus and Systems, 1974, 93(5): 1546-1555. [20] 刘绍峻. SF6电器中绝缘气体内的金属微屑[D]. 武汉: 华中理工大学, 2013. [21] 季洪鑫. 交流运行电压下GIS中金属颗粒运动行为及放电特征[D]. 北京: 华北电力大学, 2017. [22] 张连根, 路士杰, 李成榕, 等. 气体绝缘组合电器中微米量级金属粉尘运动和放电特征[J]. 电工技术学报, 2020, 35(2): 444-452. Zhang Liangen, Lu Shijie, Li Chengrong, et al.Movement and discharge characteristics of micron-scale metal dust in gas insulated switchgear[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 444-452. [23] 梁瑞雪, 王健, 胡琦, 等. 直流GIL 盆式绝缘子附近微米级金属粉尘的动力学行为与吸附机制研究[J]. 中国电机工程学报, 2020, 40(4): 1387-1396. Liang Ruixue, Wang Jian, Hu Qi, et al.Study on kinetic behavior and adsorption mechanism of the micron metal dust near the basin-type insulator in DC GIL[J]. Proceedings of the CSEE, 2020, 40(4): 1387-1396. [24] 赵政. 基于MIE散射法的金属粉尘浓度检测技术[J]. 仪表技术与传感器, 2018(5): 108-110, 119. Zhao Zheng.Detection technology of metal dust concentration based on MIE scattering method[J]. Instrument Technique and Sensor, 2018(5): 108-110, 119. [25] 宋琳. 作业场所金属粉尘监测技术研究及在线监测系统的开发[D]. 杭州: 浙江工业大学, 2019. [26] 吴付祥. 无动力粉尘浓度检测技术[J]. 煤矿安全, 2020, 51(7): 81-85. Wu Fuxiang.Detection technology of unpowered dust concentration[J]. Safety in Coal Mines, 2020, 51(7): 81-85. [27] 陈锋, 夏凤毅, 罗爱爱. 基于图像法的粉尘浓度检测[C]//环境工程2019年全国学术年会, 北京, 2109: 179-183. [28] 赵政. 基于电荷感应法的金属粉尘浓度检测技术[J]. 煤炭科学技术, 2017, 45(12): 155-159. Zhao Zheng.Detection technology of metal dust con-centration based on electric charge induction method[J]. Coal Science and Technology, 2017, 45(12): 155-159. [29] 王宇廷. 浮游金属粉尘浓度检测技术及传感器研究[D]. 北京: 煤炭科学研究总院, 2017. [30] 张所容, 陈建阁. 金属粉尘浓度检测技术研究[J]. 工矿自动化, 2017, 43(3): 57-60. Zhang Suorong, Chen Jiange.Research of detection technology of metal dust concentration[J]. Industry and Mine Automation, 2017, 43(3): 57-60. [31] 刘丹丹, 韩东志, 李德文, 等. 基于卡门涡街的静电感应粉尘浓度检测装置的设计[J]. 仪表技术与传感器, 2020(6): 24-27, 32. Liu Dandan, Han Dongzhi, Li Dewen, et al.Design of electrostatic induction dust concentration detection device based on carmen vortex street[J]. Instrument Technique and Sensor, 2020(6): 24-27, 32. [32] 王丽鹏. 基于成像法的工业微细粉尘监测系统的设计与研究[D]. 北京: 华北电力大学, 2015. [33] 李立奇. 粉体粉尘成像系统的设计[D]. 沈阳: 沈阳工业大学, 2014. [34] 张琮昌, 吴学成, 吴迎春, 等. 煤粉粉尘速度和粒径在线测量的轨迹成像法[J]. 中国电机工程学报, 2011, 31(增刊1): 108-113. Zhang Congchang, Wu Xuecheng, Wu Yingchun, et al.Trajectory imaging method for online velocity and size measurement of coal particles[J]. Proceeding of the CSEE, 2011, 31(S1): 108-113. [35] Berg M J, Videen G.Digital holographic imaging of aerosol particles in flight[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2011, 112(11): 1776-1783. [36] Abrantes J K, Stanislas M, Coudert S, et al.Digital microscopic holography for micrometer particles in air[J]. Applied Optics, 2013, 52(1): 397-409. [37] 吴迎春. 数字颗粒全息三维测量技术及其应用[D]. 杭州: 浙江大学, 2014. [38] 吴晨月. 基于高速数字全息的燃烧煤粉粉尘场可视化测量研究[D]. 杭州: 浙江大学, 2018 [39] 邹晓兵,毛志国, 王新新, 等. 用于制备纳米粉体的电爆炸金属丝演化过程诊断及电爆炸模式分析[J]. 高电压技术, 2012, 38(7): 1595-1600. Zou Xiaobing, Mao Zhiguo, Wang Xinxin, et al.Study on the evolution of wire explosion in ambient gas for nano-powder production[J]. High Voltage Engineering, 2012, 38(7): 1595-1600. [40] 孙成琪, 高阳, 杨德明, 等. 光谱法测量低压热喷涂等离子体的电子温度和电子密度[J]. 激光与光电子学进展, 2015, 52(4): 235-241. Sun Chengqi, Gao Yang, Yang Deming, et al.Spectroscopic method for measuring electron temperature and electron density of thermal spray plasma[J]. Laser & Optoelectronics Progress, 2015, 52(4): 235-241. [41] 胡振华, 张巧, 丁蕾, 等. 液体射流双脉冲激光诱导击穿Ca等离子体温度和电子数密度研究[J]. 光学学报, 2013, 33(4): 295-301. Hu Zhenhua, Zhang Qiao, Ding Lei, et al.Temperature and electron number density of liquid jet double-pulse laser induced breakdown Ca plasma[J]. Acta Optica Sinica, 2013, 33(4): 295-301. [42] Diessner A, Trump J G. Free conducting particles in a coaxial compressed-gas-insulated system[J]. IEEE Transactions on Power Apparatus and Systems, 1970, PAS-89(8): 1970-1978. [43] Banford H M.Particles and breakdown in SF6-insulated apparatus[J]. Proceedings of the Institution of Electrical Engineers, 1976, 123(9): 877-881. [44] 许渊, 刘卫东, 陈维江, 等. 基于高灵敏测量的GIS绝缘子表面微金属颗粒局部放电特性[J]. 高电压技术, 2019, 45(9): 2707-2714. Xu Yuan, Liu Weidong, Chen Weijiang, et al.Partial discharge characteristics of metal particles on spacer surface in GIS based on high sensitivety measurement[J]. High Voltage Engineering, 2019, 45(9): 2707-2714. [45] 许渊, 刘卫东, 陈维江, 等. GIS绝缘子局部放电高灵敏测量方法及应用[J]. 中国电机工程学报, 2020, 40(5): 1703-1713. Xu Yuan, Liu Weidong, Chen Weijiang, et al.High sensitivity measurement method and application of GIS spacer partial discharge[J]. Proceedings of the CSEE, 2020, 40(5): 1703-1713. [46] Ma Guoming, Zhou Hongyang, Zhang Meng, et al.Ahigh sensitivity optical fiber sensor for GIS partial discharge detection[J]. IEEE Sensors Journal, 2019, 19(15): 9235-9243. [47] 周宏扬, 马国明, 张猛, 等. 基于Michelson光纤干涉的GIS局部放电超声信号检测技术[J]. 中国电机工程学报, 2019, 39(21): 6452-6460. Zhou Hongyang, Ma Guoming, Zhang Meng, et al.Partial discharge ultrasonic signal detection technology in GIS based on the Michelson fiber optic interferometer[J]. Proceedings of the CSEE, 2019, 39(21): 6452-6460. [48] 樊高辉, 刘尚合, 刘卫东, 等. 采用自适应随机共振技术进行微弱局部放电信号检测[J]. 高电压技术, 2016, 42(10): 3221-3229. Fan Gaohui, Liu Shanghe, Liu Weidong, et al.Detecting weak partial discharge signal by using technique of adaptive stochastic resonance[J]. High Voltage Engineering, 2016, 42(10): 3221-3229. [49] 刘卫东, 刘尚合, 胡小锋, 等. 基于互相关信息积累的非周期微弱局部放电源探测方法[J]. 高电压技术, 2017, 43(3): 966-972. Liu Weidong, Liu Shanghe, Hu Xiaofeng, et al.Aperiodic weak partial discharge source detection based on accumulation of cross correlation estimation information[J]. High Voltage Engineering, 2017, 43(3): 966-972. |
|
|
|