|
|
Aviation AC Series Arc Fault Detection Based on Improve Empirical Wavelet Transform Multi-Feature Fusion |
Cui Ruihua1,2, Zhang Zhen1,2, Tong Deshuan1,2, Cui Jianping3 |
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300130 China; 3. Avic Tianjin Aviation Electro-Mechanical Co. Ltd Tianjin 300308 China |
|
|
Abstract An arc fault detection method based on improved empirical wavelet transform (IEWT) multi-feature fusion and extreme learning machine (ELM) was proposed to deal with the mode mixing phenomenon of the time-frequency domain analysis method (EMD). Firstly, the arc current signal was decomposed into five empirical mode components (EMFs) by IEWT, and the weight energy entropy of EMFs, sample entropy of EMF4, and root mean square value of EMF1 were extracted as characteristic variables. After data standardization, the three arc fault features were fused to form a multi-dimensional feature matrix, and finally the fault was identified by ELM. Comparing the IEWT and EMD decomposition, the results show that the IEWT method is superior to the signal processing of EMD, and it also avoids the misjudgment caused by a single feature under the multi-feature extraction. Combined with ELM, arc faults can be accurately identified, and the average accuracy is 97.85%.
|
Received: 29 December 2020
|
|
|
|
|
[1] 张栋善, 陈沛树. 航空电气系统中故障电弧的分析[J]. 电子制作, 2017(22): 27-28. Zhang Dongshan, Chen Peishu.Analysis of fault arc in aviation electrical system[J]. Practical Electronics, 2017(22): 27-28. [2] Zhao Long, Zhou Yuhao, Chen Kunlong, et al.Using spectrum of the light for high speed arcing fault detection[C]//2018 IEEE IAS Electrical Safety Work-shop (ESW), Fort Worth, TX, USA, 2018: 1-8. [3] 刘柱揆, 丁心志, 陈福明, 等. 开关柜电弧故障及其测量方法研究[J]. 电网技术, 2017, 41(4): 1345-1349. Liu Zhukui, Ding Xinzhi, Chen Fuming, et al.Research on switchgear arc discharge fault and its measurement[J]. Power System Technology, 2017, 41(4): 1345-1349. [4] 王尧, 张彦风, 牛峰, 等. 光伏直流电弧电磁辐射特性分析与测量方法[J]. 电工技术学报, 2019, 34(14): 2913-2921. Wang Yao, Zhang Yanfeng, Niu Feng, et al.Characteri-zation and measurement method of DC arc electro-magnetic radiation for photovoltaic systems[J]. Transactions of China Electrotechnical Society, 2019, 34(14): 2913-2921. [5] 张冠英, 张晓亮, 刘华, 等. 低压系统串联故障电弧在线检测方法[J]. 电工技术学报, 2016, 31(8): 109-115. Zhang Guanying, Zhang Xiaoliang, Liu Hua, et al.Online detection method for series arcing fault in low voltage system[J]. Transactions of China Electro-technical Society, 2016, 31(8): 109-115. [6] Kim J C, Neacşu D O, Lehman B, et al.Series AC arc fault detection using only voltage waveforms[C]//2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 2019: 2385-2389. [7] Syafi'i M A, Prasetyono E, Khafidli M K, et al. Real time series DC arc fault detection based on fast fourier transform[C]//2018 International Electronics Symposium on Engineering Technology and Appli-cations,(IES-ETA), Bali, Indonesia, 2018: 25-30. [8] Artale G, Cataliotti A, Cosentino V, et al.Arc fault detection method based on CZT low-frequency harmonic current analysis[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(5): 888-896. [9] 张士文, 张峰, 王子骏, 等. 一种基于小波变换能量与神经网络结合的串联型故障电弧辨识方法[J]. 电工技术学报, 2014, 29(6): 290-295, 302. Zhang Shiwen, Zhang Feng, Wang Zijun, et al.Series arc fault identification method based on energy produced by wavelet transformation and neural network[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 290-295, 302. [10] 郭凤仪, 邓勇, 王智勇, 等. 基于灰度-梯度共生矩阵的串联故障电弧特征[J]. 电工技术学报, 2018, 33(1): 71-81. Guo Fengyi, Deng Yong, Wang Zhiyong, et al.Arc fault characteristics based on gray level-gradient co-occurrence matrix[J]. Transactions of China Electro-technical Society, 2018, 33(1): 71-81. [11] 苏晶晶, 许志红. 基于EMD和PNN的故障电弧多变量判据诊断方法[J]. 电力自动化设备, 2019, 39(4): 106-113. Su Jingjing, Xu Zhihong.Diagnosis method of multi-variable criterion based on EMD and PNN for arc fault diagnosis[J]. Electric Power Automation Equipment, 2019, 39(4): 106-113. [12] Chen Changken, Guo Fengyi, Liu Yanli, et al.Recognition of series arc fault based on the Hilbert Huang transform[C]//2015 IEEE 61st Holm Con-ference on Electrical Contacts, San Diego, CA, USA, 2015: 324-330. [13] 张瑶佳, 王莉, 尹振东, 等. 基于HHT的航空直流串行电弧特征提取方法[J]. 航空学报, 2019, 40(1): 522404. Zhang Yaojia, Wang Li, Yin Zhendong, et al.Research on characteristics extraction method of aviation DC serial arc fault based on HHT[J]. Acta Aeronautica ET Astronautica Sinica, 2019, 40(1): 522404. [14] 高飞, 董伟, 桂美景, 等. 基于集合经验模态分解的交流航空故障电弧识别[J]. 电工电能新技术, 2020, 39(4): 73-80. Gao Fei, Dong Wei, Gui Meijing, et al.Aviation AC arc fault detection based on ensemble empirical mode decomposition[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39(4): 73-80. [15] 李志农, 朱明, 褚福磊, 等. 基于经验小波变换的机械故障诊断方法研究[J]. 仪器仪表学报, 2014, 35(11): 2423-2432. Li Zhinong, Zhu Ming, Chu Fulei, et al.Mechanical fault diagnosis method based on empirical wavelet transform[J]. Chinese Journal of Scientific Instrument, 2014, 35(11): 2423-2432. [16] 崔芮华, 李泽, 佟德栓. 基于三维熵距和熵空间的航空电弧故障检测与分类技术[J]. 电工技术学报, 2021, 36(4): 869-880. Cui Ruihua, Li Ze, Tong Deshuan.Arc fault detection and classification based on three-dimensional entropy distance and entropy space in aviation power system[J]. Transactions of China Electrotechnical Society, 2021, 36(4): 869-880. [17] 郑昕, 单潇洁. 低压交流电弧电流零区电压波形特征分析与应用[J]. 电工技术学报, 2020, 35(22): 4717-4725. Zheng Xin, Shan Xiaojie.Characteristic analysis and application research of low voltage AC arc voltage waveform at the current zero[J]. Transactions of China Electrotechnical Society, 2020, 35(22): 4717-4725. [18] UL 1699-2006. Standard for arc-fault circuit-interruptersL 1699-2006. Standard for arc-fault circuit-interrupters[S]. USA: Underwriters Laboratories, 2006. [19] SAEAS 5692-2009 Arc fault circuit breaker (AFCB), aircraft, trip-free single phase and three phase 115V AC, 400Hz-constant frequency[S]. USA: Society of Automotive Engineers, 2009. [20] Gilles J, Heal K.A parameterless scale-space approach to find meaningful modes in histograms application to image and spectrum segmentation[J]. International Journal of Wavelets Multiresolution and Information Processing, 2014, 12(6): 1450044. [21] Gilles J.Empirical wavelet transform[J]. IEEE Transa-ctions on Signal Processing, 2013, 61(16): 3999-4010. [22] 吴建章, 梅飞, 潘益, 等. 基于改进经验小波变换的电能质量扰动检测新方法[J]. 电力自动化设备, 2020, 40(6): 142-151. Wu Jianzhang, Mei Fei, Pan Yi, et al.Novel detection method of power quality disturbance based on IEWT[J]. Electric Power Automation Equipment, 2020, 40(6): 142-151. [23] 刘艳丽, 郭凤仪, 李磊, 等. 一种串联型故障电弧数学模型[J]. 电工技术学报, 2019, 34(14): 2901-2912. Liu Yanli, Guo Fengyi, Li Lei, et al.A kind of series fault arc mathematical model[J]. Transactions of China Electrotechnical Society, 2019, 34(14): 2901-2912. [24] 陈琳, 陈静, 王惠民, 等. 基于小波包能量熵的电池剩余寿命预测[J]. 电工技术学报, 2020, 35(8): 1827-1835. Chen Lin, Chen Jing, Wang Huimin, et al.Prediction of battery remaining useful life based on wavelet packet energy entropy[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1827-1835. [25] 何海, 胡姝博, 张建华, 等. 基于样本熵的新能源电力系统净负荷分时段调度[J]. 电力系统自动化, 2019, 43(24): 77-86. He Hai, Hu Shubo, Zhang Jianhua, et al.Sample entropy based divided-period dispatch of net load in new energy power system[J]. Automation of Electric Power Systems, 2019, 43(24): 77-86. [26] 张血琴, 张玉翠, 郭裕钧, 等. 基于高光谱技术的复合绝缘子表面老化程度评估[J]. 电工技术学报, 2021, 36(2): 388-396. Zhang Xueqin, Zhang Yucui, Guo Yujun, et al.Aging degree evaluation of composite insulator based on hyperspectral technology[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 388-396. |
|
|
|