|
|
DC Bus Voltage Fluctuation Suppression Strategy for Small Capacitance Dual-PWM Speed Regulating System |
Yao Xuliang1, Luo Xinghong1,2, Ma He1, Huang Shengqi1 |
1. College of intelligent Systems Science and Engineering Harbin Engineering University Harbin 150001 China; 2. Hangzhou Zhongheng Electric Company Limited Hangzhou 310051 China |
|
|
Abstract Dual-PWM AC-DC-AC speed regulating system is widely used in modern Marine electric cranes. However, the system is not suitable for integration and maintenance because the DC bus uses large-capacity electrolytic capacitors. Based on the modeling of small signals, this paper presents a control strategy using small capacitance. Firstly, the reasons for system instability when the DC bus adopts small capacitors are analyzed. Then, the DC bus voltage feed-forward compensation and the d-axis current feed-forward compensation are designed to improve the system stability and load capacity. Combined with their advantages, the control strategy of small capacitance dual PWM speed regulation system is obtained. The simulation and experiment with permanent magnet synchronous motor as the load show that this strategy can ensure the stable operation of the system, restrain the voltage fluctuation of the DC bus during load sudden change and vibration, reduce the harmonic injection into the power network, and the parameter design method is universal.
|
Received: 15 July 2021
|
|
|
|
|
[1] 谢仕宏, 孟彦京, 高钰淇, 等. 小电容变频器及感应电机回馈能量分析[J]. 电工技术学报, 2020, 35(4): 734-744. Xie Shihong, Meng Yanjing, Gao Yuqi, et al.Analysis about small capacitor frequency converter and feedback energy of induction motors[J]. Transa-ctions of China Electrotechnical Society, 2020, 35(4): 734-744. [2] 耿程飞, 杨波, 吴翔, 等. 背靠背三电平变流器IGBT共叠层母线过电压耦合分析及解耦方法[J]. 电工技术学报, 2020, 35(增刊2): 440-449. Geng Chengfei, Yang Bo, Wu Xiang, et al.Coupled over-voltage analysis and decoupling method of IGBT on the one laminated bus-bar based on back to back three-level converter[J]. Transactions of China Elec-trotechnical Society, 2020, 35(S2): 440-449. [3] Zhao Nannan, Wang Gaolin, Li Binxing, et al.Beat phenomenon suppression for reduced DC-link capa-citance IPMSM drives with fluctuated load torque[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8334-8344. [4] 叶虹志, 姜燕, 黄守道, 等. 电压型PWM整流器无差拍预测直接功率控制[J]. 电工技术学报, 2015, 30(4): 121-128. Ye Hongzhi, Jiang Yan, Huang Shoudao, et al.Dead-beat predictive direct power control for three-phase voltage source PWM rectifiers[J]. Transactions of China Electrotechnical Society, 2015, 30(4): 121-128. [5] 杨迪瑞, 杨文焕, 李荣高. 双PWM交流调速系统耦合调制建模及其注入电网间谐波电流特性分析[J].中国电机工程学报, 2017, 37(3): 869-880. Yang Dirui, Yang Wenhuan, Li Ronggao.Modeling for coupling modulation in dual PWM speed control systems and characteristic analysis of inter harmonic currents injected into distribution networks[J]. Proceedings of the CSEE, 2017, 37(3): 869-880. [6] 朱进权, 葛琼璇, 王晓新, 等. 基于自抗扰和负载功率前馈的高速磁悬浮系统PWM整流器控制策略[J]. 电工技术学报, 2021, 36(2): 320-329. Zhu Jinquan, Ge Qiongxuan, Wang Xiaoxin, et al.Control strategy for PWM rectifier of high-speed maglev based onactive disturbance rejection control and load power feed-forward[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 320-329. [7] Xiao Xiong, Zhang Yongjun, Wang Jing, et al.An improved model predictive control scheme for the PWM rectifier-inverter system based on power-balancing mechanism[J]. IEEE Transactions on Industrial Electronics, 2016, 63(8): 5197-5208. [8] 李振, 盛万兴, 段青, 等. 背靠背低压直流配电装备及其直流电压控制策略[J]. 中国电机工程学报, 2018, 38(23): 6873-6881, 7121. Li Zhen, Sheng Wanxing, Duan Qing, et al.Back to back LVDC distribution equipment and DC voltage control strategy[J]. Proceedings of the CSEE, 2018, 38(23): 6873-6881, 7121. [9] 熊飞, 聂川杰, 李骏驰, 等. 电力电子变压器的内部能量流动协调控制策略[J]. 电力系统自动化, 2020, 44(15): 127-138. Xiong Fei, Nie Chuanjie, Li Junchi, et al.Coor-dination control strategy for energy flow inside power electronic transformer[J]. Automation of Electric Power Systems Press, 2020, 44(15): 127-138. [10] Si Zhaolu, Zhao Di, Li Kai, et al.A distributed feedforward control method for power electronic transformers[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(4): 319-328. [11] Liut P, Pierfe S, Bilal A, et al.Stability investigation of inverter motor drive system with input filter-optimisation of the DC-link capacitance value[C]//IEEE Power Electronics Specialists Conference, Rhodes, 2008: 3728-3734. [12] Xuan Zhang, Li Xu, Li Yongdong, et al.Stabilization and assessment of interaction dynamics for more electric aircraft[C]//IEEE International Power Elec-tronics and Motion Control Conference, Hefei, 2016: 874-880. [13] 戴鹏, 朱方田, 朱荣伍, 等. 电容电流直接控制的双PWM协调控制策略[J]. 电工技术学报, 2011, 26(增刊1): 136-141. Dai Peng, Zhu Fangtian, Zhu Rongwu, et al.Direct control of capacitor current for AC-DC-AC PWM converter[J]. Transactions of China Electrotechnical Society, 2011, 26(S1): 136-141. [14] Lin Jun, Weiss G.Plug-and-play control of the virtual infinite capacitor[J]. IEEE Transactions on Power Electronics, 2020, 35(2): 1947-1956. [15] Wang Ruxi, Wang Fei, Boroy D, et al.A high power density single-phase PWM rectifier with active ripple energy storage[J]. IEEE Transactions on Power Electronics, 2010, 26(5): 1430-1443. [16] 张欣, 阮新波. 用于提高级联型电源系统稳定性的自适应有源电容变换器[J]. 电工技术学报, 2012, 27(2): 23-32. Zhang Xin, Ruan Xinbo.Adaptive active capacitor converter for improving the stability of cascaded DC power supply system[J]. Transactions of China Elec-trotechnical Society, 2012, 27(2): 23-32. [17] 黄远胜, 刘和平, 苗轶如, 等. 基于并联虚拟电阻的级联DC-DC变换器稳定控制方法[J]. 电工技术学报, 2020, 35(18): 3927-3937. Huang Yuansheng, Liu Heping, Miao Yiru, et al.Cascaded DC-DC converter stability control method based on paralleling virtual resistor[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3927-3937. [18] Liuta P, Awan A, Pierfe S, et al.Linear stabilization of a DC bus supplying a constant power load: a general design approach[J]. IEEE Transactions on Power Electronics, 2010, 25(2): 475-488. [19] 夏文婧, 刘碧, 王嵩, 等. 基于输入端电压动态分量优化的PWM整流器模型预测控制[J]. 电力系统自动化, 2020, 44(1): 200-207. Xia Wenjing, Liu Bi, Wang Song, et al.Model predictive control of PWM rectifiers based on dynamic component optimization of input-port voltage[J]. Automation of Electric Power Systems Press, 2020, 44(1): 200-207. |
|
|
|