|
|
Improve Method the Safety Performance of 10kV High Voltage Switchgear |
Dong Pan1, Yang Xin1, Jia Pengfei2, Lei Jiacheng1, Liu Yao3 |
1. School of Electrical & Information Engineering Changsha University of Science and Technology Changsha 410114 China; 2. China Electric Power Research Institute Beijing 100192 China; 3. State Grid Beijing Electric Power Company Beijing 100031 China |
|
|
Abstract Aiming at the secondary damage of the explosion caused by the internal short-circuit arc of the 10kV high-voltage switchgear, the paper proposed calculation methods and design suggestions to improve the safety margin of the switchgear from the perspective of comparing the safety margin of the cabinet box and cabinet door. The heat source equivalent and sub-cabin modeling methods were adopted, and the finite element simulation calculation method of multi-physics coupling was used to simulate the safety margin of the switchgear under the impact of short-circuit arc. Taking the cable room as an example, the safety margin values (51% and 2%, respectively) of the cable room cabinet and the door were obtained. It is pointed out that the key to the safety margin of the switchgear is to increase the safety margin value of the cabinet door. A method of covering the inner side of the cabinet door with ceramic silicone rubber polymer composite refractory material is proposed to improve the safety margin of the cabinet door, and a 3mm thick ceramic silicone rubber polymer composite refractory material is covered in the area of high pressure inside the cabinet door. The safety margin of the cabinet door can be increased to 70%, and the overall safety performance of the switch cabinet is improved. Compared with traditional upgrading methods, it is more targeted, promotes the development of lightweight equipment, and provides new solutions and methods for upgrading the safety level of 10kV switchgear.
|
Received: 28 December 2020
|
|
|
|
|
[1] 张俊民, 高荟凯, 冯昊. 三种绝缘气体下开关设备的温度场及流场对比与分析[J]. 电工技术学报, 2015, 30(6): 155-161. Zhang Junmin, Gao Huikai, Feng Hao.Analysis of thermal and fluid field of switchgear in three insulating gases[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 155-161. [2] 李渊, 淡淑恒. 开关柜内部故障电弧危害及其防护综述[J]. 高压电器, 2018, 54(7): 73-78. Li Yuan, Dan Shuheng.Review on the hazards and protection of switchgear internal fault arc[J]. High Voltage Apparatus, 2018, 54(7): 73-78. [3] 聂一雄, 徐卫东, 周文文, 等. 12kV固体绝缘开关柜中绝缘气隙缺陷的放电特征[J]. 电工技术学报, 2018, 33(12): 2894-2902. Nie Yixiong, Xu Weidong, Zhou Wenwen, et al.Discharge characteristics of air-gap defects in insulating material of 12kV solid insulated switchgear[J]. Transactions of China Electrotechnical Society, 2018, 33(12): 2894-2902. [4] 黎鹏, 刘畅, 吴泳聪, 等. 基于NSGA-Ⅱ算法的高压开关柜泄压通道优化设计[J]. 高电压技术, 2020, 46(6): 2013-2020. Li Peng, Liu Chang, Wu Yongcong, et al.Optimization design of pressure relief channel for HV switchgear based on NSGA-Ⅱ[J]. High Voltage Engineering, 2020, 46(6): 2013-2020. [5] GB 3906—2006 3.6kV~40. 5kV交流金属封闭开关设备和控制设备 3906—2006 3.6kV~40. 5kV交流金属封闭开关设备和控制设备[S]. 2006. [6] 阮江军, 黎鹏, 黄道春, 等. 中压开关柜内部短路燃弧热-力效应研究综述[J]. 高电压技术, 2018, 44(10): 3340-3351. Ruan Jiangjun, Li Peng, Huang Daochun, et al.Review on thermal mechanical effect of short circuit arc ignition in medium voltage switchgear[J]. High Voltage Engineering, 2018, 44(10): 3340-3351. [7] 王伟. 12kV开关柜内部燃弧仿真及柜体强度优化[D]. 沈阳: 沈阳工业大学, 2011. [8] 熊泰昌. 内部电弧故障试验情况下中压开关柜强度计算[J]. 高压电器, 2002, 38(4): 42-44. Xiong Taichang.Strength calculation of medium voltage switchgear under internal arc-fault test[J]. High Voltage Apparatus, 2002, 38(4): 42-44. [9] 蓝会立, 张认成. 开关柜内部故障电弧探测法的研究现状及趋势[J]. 高电压技术, 2008, 34(4): 496-499. Lan Huili, Zhang Rencheng.Current research and development trends on faults arc detection method in switch cabinet[J]. High Voltage Engineering, 2008, 34(4): 496-499. [10] 李朝顺. 开关柜内燃弧时等效强度校验计算[J]. 东北电力技术, 2007(2): 27-29. Li Zhaoshun.Checkup calculation of equivalent strength during arch burning in the switch cabinet[J]. Northeast Electric Power Technology, 2007(2): 27-29. [11] 熊泰昌. 高压开关柜防护内部电弧故障的结构强度计算与试验研究[J]. 上海电器技术, 2002(3): 124-128. Xiong Taichang.Strength calculation and test research of high-voltage switchgear against internal arc faults[J]. Shanghai Electric Appliance Technology, 2002(3): 124-128. [12] 蔡彬, 陈德桂, 吴伟光, 等. 开关柜耐受最大冲击载荷的冲击动力学研究[J]. 中国电机工程学报, 2005, 25(4): 124-130. Cai Bin, Chen Degui, Wu Weiguang, et al.Research of shock dynamics on withstanding the maximal shock load in switchgear assemblies[J]. Proceedings of the CSEE, 2005, 25(4): 124-130. [13] 吴伟光, 蔡彬, 马履中. 利用ANSYS 确定开关柜承受的最大爆炸冲击载荷[J]. 机械设计与制造, 2005(10): 92-93. Wu Weiguang, Cai Bin, Ma Lüzhong.Calculated the maximal impactload of switch tank’s sheet matcal with ANSYS[J]. Machinery Design & Manufacture, 2005(10): 92-93. [14] Rochette D, Clain S, Bussiere W, et al.Porous filter optimization to improve the safety of the medium-voltage electrical installations during an internal arc fault[J]. IEEE Transactions on Power Delivery, 2010, 25(4): 2464-2471. [15] Iwata M, Tanaka S I, Miyagi T, et al.Influence of perforated metal plate on pressure rise and energy flow due to internal arcing in a container with a pressure-relief opening[J]. IEEE Transactions on Power Delivery, 2014, 29(3): 1292-1300. [16] 黎鹏, 阮江军, 黄道春, 等. 封闭容器内部短路燃弧爆炸压力效应计算[J]. 爆炸与冲击, 2017, 37(6): 1065-1071. Li Peng, Ruan Jiangjun, Huang Daochun, et al.Pressure effect calculation of internal short-circuit arcing explosion in a closed container[J]. Explosion and Shock Waves, 2017, 37(6): 1065-1071. [17] Zhang Xiang, Pietsch G, Gockenbach E.Investigation of the thermal transfer coefficient by the energy balance of fault arcs in electrical installations[J]. IEEE Transactions on Power Delivery, 2005, 21(1): 425-431. [18] 蔡彬, 陈德桂. 中压开关柜中内部电弧故障的计算方法和防护措施[J]. 高压电器, 2003, 39(1): 8-11. Cai Bin, Chen Degui.The Calculation and protective measures of internal arcing faults in MV metal-clad switchgear[J]. High Voltage Apparatus, 2003, 39(1): 8-11. [19] 郭凤仪, 高洪鑫, 唐爱霞, 等. 局部二值模式直方图匹配的串联故障电弧检测及选线[J]. 电工技术学报, 2020, 35(8): 1653-1661. Guo Fengyi, Gao Hongxin, Tang Aixia, et al.Series arc fault detection and line selection based on local binary pattern histogram matching[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1653-1661. [20] 张明, 王永兴, 田宇, 等. 气流场驱动下栅片中弧压提升特性的数值分析[J]. 电工技术学报, 2019, 34(13): 2752-2759. Zhang Ming, Wang Yongxing, Tian Yu, et al.Numerical analysis of arc voltage increasing characteristics in plate driven by airflow field[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2752-2759. [21] 倪佳佳. 12/24kV开关柜内电弧故障分析及保护[D]. 厦门: 厦门理工学院, 2017. [22] 李元, 薛建议, 任双赞, 等. 高压开关柜温湿度分布的三维数值模拟研究[J]. 电工技术学报, 2019, 34(24): 5095-5103. Li Yuan, Xue Jianyi, Ren Shuangzan, et al.Research on 3D numerical simulation of temperature and humidity distribution inside high voltage switchgear[J]. Transactions of China Electrotechnical Society, 2019, 34(24): 5095-5103. [23] 吴田, 杨东, 黎鹏, 等. 中压开关柜内部电弧压力升计算—模型简化方法研究[J]. 高压电器, 2020, 56(3): 39-45, 53. Wu Tian, Yang Dong, Li Peng, et al.Study on the model simpliflcation method for the calculation of arc pressure rise in MV switchgear[J]. High Voltage Apparatus, 2020, 56(3): 39-45, 53. [24] 程鹏. 电缆接头内部缺陷下的电磁—热—力特性及表征方法研究[D]. 重庆: 重庆大学, 2016. [25] Hoad R, Carter N J, Herke D, et al.Trends in EM susceptibility of IT equipment[J]. IEEE Transactions on Electromagnetic Compatibility, 2004, 46(3): 390-395. [26] 彭小弟, 夏亚芳, 刘军. 一种新型陶瓷化高分子复合耐火硅橡胶耐火电缆的研制[J]. 电线电缆, 2007(4): 28-29. Peng Xiaodi, Xia Yafang, Liu Jun.Development of a new type of fire-resisting cable with ceramic polymer composite silicone rubber as insulation[J]. Electric Wire & Cable, 2007(4): 28-29. |
|
|
|